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A B S T R A C T   

Machine learning approaches are emerging as a promising method for assisting in the control of thermochemical 
processes. eXtreme Gradient Boosting (XGB) and Random Forest (RF) were applied, for the first time, for pre-
diction of fuel properties of hydrochar from co-hydrothermal carbonization of sewage sludge (SS) and biomass. 
XGB outperformed RF in the prediction of carbon content, O/C, higher heating value, and mass and energy 
yields, while RF surpassed XGB in the prediction of H/C, N/C, and fuel ratio. The R2 between the predicted and 
experimental values for the best models was in [0.94–1] and [0.83–0.95], respectively for training and test. The 
feature importance and partial dependence analyses were used to interpret models and provide comprehensive 
understanding of the input features’ impact. Based on the best models, a graphical user interface was created to 
make prediction easier for other researchers. By only knowing the properties of SS and lignocellulosic biomass, 
the authors could prior to experiments explore various co-HTC conditions and SS ratios to find the most 
appropriate conditions to obtain some given properties of hydrochar. This will save time and resources that are 
usually spent on several trial experiments that may sometimes not yield positive results.   

1. Introduction 

COP26 meeting in Glasgow urged the consideration of waste and 
residues in the supply of biofuels and bio-based materials [1]. Therefore, 
efforts are being initiated towards this goal, and many thermochemical 
and biochemical processes are being examined for the conversion of 
various biowastes into valuables biofuels. Among the available pro-
cesses, hydrothermal carbonization (HTC) has gained popularity for the 
processing of wet organic waste, mainly sewage sludge (SS) which is a 
major municipal solid waste that cannot be prevented and is seen as a 
global critical environmental issue. However, the heterogeneous nature, 
the relatively lower carbon content and significant nitrogen and ash 
contents of SS limit the quality of the hydrochar for solid fuel application 
[2]. Considering this, recent interest has focused on substituting a 

portion of SS with lignocellulosic biomass during the HTC, and this is 
named “co-HTC”. 

Several studies have reported an improved fuel properties of the co- 
HTC resulting hydrochar when compared to the raw SS, the mixture of 
SS and the lignocellulosic biomass or the hydrochar from SS alone [3–7]. 
The improved combustion properties not only relate to the heating 
release, but also to the potential reduction of ecotoxicity risk. The 
co-HTC is hence reported as a potential economical and feasible 
approach to enhance the fuel properties of the hydrochar with reduced 
environmental impact when combusted [5–7]. 

Various features of the resulting hydrochar are reported to impact on 
the fuel properties of the hydrochar when combusted. Higher carbon 
content leads to improved HHV that defines the amount of the available 
thermal energy produced by a complete combustion of the hydrochar. 
Relatively lower atomic ratios of H/C and O/C are reported to improve 
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the fuel properties via the reduction of smoke, water vapor, and energy 
losses during the combustion of the solid fuel [8,9]. Higher fuel ratio 
defining an improved stability of the hydrochar, can increase the firing 
temperature, provide greater flame stability (maintaining less violent 
flame) and reduce heat loss during combustion [10]. Reduced volatile 
matter content (resulting in high fuel ratio, and lower H/C and O/C 
ratios) is also expected to increase the ignition temperature of the 
hydrochar [3,8], confirming that the hydrochar is safer during handling, 
storage, and transportation [3]. Lower N/C ratio is good to expect lower 
NOx emission during combustion. Hence, these features are of great 
importance for the fuel application of the hydrochar. However, the 
optimal reaction conditions to reach to appropriate values of these 
features during co-HTC vary from one work to another given the dif-
ference in feedstock composition and the fact that the values of the re-
action parameters vary across research investigations. Therefore, it is 
challenging to get a holistic appreciation of the impact of the processing 
parameters. As a result, the optimized process conditions for a given 
feedstock is typically achieved following numerous experimental trials, 
which causes a waste of time and resources. Also, the results got from a 
given work cannot be typically well applied to another feedstock, as the 
reaction is a result of various cross-impact of many features involved. 
Given this and considering the growing interest in Machine Learning 
(ML) algorithms models in the field of thermochemical processing of 
biomass and organic solid waste, the purpose of this work is to examine 
some data driven ML algorithms for the prediction of fuel properties of 
hydrochar from co-HTC of SS and lignocellulosic biomass. The hydro-
char properties of interest in the current work include carbon content 
(Ch), H/C ratio (H/Ch), O/C ratio (O/Ch), N/C ratio (N/Ch), higher 
heating value (HHVh), fuel ratio (FRh), mass yield (MY) and energy 
yield (EY). 

ML refers to a system’s ability to acquire and integrate knowledge 
through large-scale observations, as well as to improve and extend itself 
by learning new knowledge [11]. Unlike traditional statistics, the core 
principle of ML is to “let the data speak for themselves,” with the human 
making as few assumptions about the data as possible [12]. However, 
ML techniques must be used with caution and prudence because they are 
not a magic bullet and do not replace thoughtful design [11]. The first 
step in any ML modeling procedure is to establish a hypothesis model 
that considers information on the nature and characteristics of the 
process to be modelled. This lowers the possibility of false-positive re-
sults and eases the subsequent explanations [12]. A well-designed ML 
model can provide accurate interpretations to help with important de-
cisions [13]. 

ML solving problems can be categorized into regression and classi-
fication. The problem to address in this work is a regression problem and 
various ML algorithms are available to approach it. The most widely 

reported recently in thermochemical processing field include Decision 
Trees, Supporting Vector Regressor, Artificial Neural Networks, Random 
Forest (RF), Gradient boosting, and eXtreme Gradient boosting (XGB). In 
this work, XGB and RF algorithms that implement an ensemble learning 
approach were examined. 

Ensemble learning is a ML approach that combines several base 
predictors, such as individual learning algorithms, to produce improved 
prediction in terms of accuracy and stability [14]. Its great accuracy, 
generalization, and robustness make it a popular ML approach. It is 
typically divided into boosting (such as XGB) and bagging (such as RF) 
approaches. XGB is a cutting-edge ensemble learning system that uses 
the gradient boosting technique together with several decision trees that 
have been developed in series, with each subsequent decision tree 
learning and growing from the mistakes of the prior tree [15]. When the 
subsequent decision trees are sufficiently deep or when there are no 
longer any error patterns in the prior tree, XGB learning will stop. This 
algorithm has been reported to be accurate for small to medium-sized 
structured or tabular data sets [16]. For a regression problem, RF is a 
bagging ensemble learning method that constructs a given number of 
regression trees before averaging their individual outputs to generate a 
final overall prediction. As a result, the overall bias of the algorithm is 
reduced because there are multiple trees, and each tree is trained on a 
subset of data. Even if a new data point is added to the dataset, the 
overall algorithm is hard to be affected because new data may affect one 
tree, but it is extremely hard to affect all trees. 

XGB and RF algorithms have been recently examined and exhibited 
good prediction results in many works related to hydrothermal pro-
cessing, including the prediction of higher heating value, and yield of 
biocrude from hydrothermal liquefaction of wet-biomass [15], the pre-
diction of biocrude yield from hydrothermal liquefaction of organic 
wastes [16], the prediction of phosphorous content of hydrochar from 
HTC of SS [17], the multitask prediction of bio-oil properties from hy-
drothermal liquefaction of biomass [18]. However, to the best of the 
authors’ knowledge, this is the first time ML in general and particularly 
XGB and RF algorithms are used for the co-HTC processing of SS and 
lignocellulosic biomass. The accurate predicting models will aid in 
giving a comprehensive understanding of the effects of the numerous 
factors that impact the hydrochar properties. The models can also be 
used for prediction prior to experiments. 

2. Methods 

2.1. Dataset compilation and pre-processing 

To build the dataset, published papers were extensively searched 
from databases including Web of Sciences, ScienceDirect, Google 

List of acronyms and abbreviations 

Subscripts 
s Sewage sludge 
b lignocellulosic biomass 
h hydrochar 

Abbreviations 
ML Machine Learning 
XGB eXtreme Gradient Boosting 
RF Random Forest 
RMSE Root mean square error 
R2 Square of the correlation coefficient 
SHAP SHapley Additive Explanation 
HTC Hydrothermal carbonization 
RT Reaction temperature 

Rt Reaction time (min) 
SSratio Ratio of sewage sludge in the feedstock mixture (wt.%, db) 
SL Solid loading in the reaction system (wt.%) 
SS Sewage sludge 
C Carbon content (wt.%, db) 
H Hydrogen content (wt.%, db) 
N Nitrogen content (wt.%, db) 
O Oxygen content (wt.%, db) 
V Volatile matter content (wt.%, db) 
FC Fixed carbon content (wt.%, db) 
A Ash content (wt.%, db) 
HHV Higher heating value 
MY Mass yield of the hydrochar 
EY Energy yield of the hydrochar  
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Scholar, and Scopus, and downloaded from the journals’ websites. After 
the screening of many peer-review published papers, the papers 
providing useful information were considered and data was immediately 
gathered from the included tables or retrieved from the figures in the 
paper or in the supporting information. The considered dataset in this 
work includes co-HTC for 20 various SS and 33 various lignocellulosic 
biomasses, as presented in Table 1. Overall, 221 datapoints were re-
ported for co-HTC conditions. All the raw data are presented in Sup-
plementary Material SM1. 

C+H + N + O + Ash = 100 (1)  

VM+ FCs + Ash = 100 (2) 

The target fuel properties of the hydrochar considered in this work 
are presented in Table 2, and include Ch, H/Ch, O/Ch, N/Ch, HHVh, fuel 
ratio (FRh), mass yield (MY) and energy yield (EY). 

From the literature, some of these features maybe evaluated through 
various formulas. Therefore, HHVh, FRh and EY were calculated using 
Eq. (3) [35], Eq. (4) and Eq. (5), respectively. 

HHVh= 0.3491Ch + 1.1783Hh + 0.1034Oh − 0.015Nh − 0.021Ah (3)  

FRh=
FCh
Vh

(4)  

EY=
HHVh

HHVmix
× MY (5) 

For the prediction, three (03) various configurations of the input 
features were assessed for each of the outputs. These configurations 
include the data of ultimate analysis alone, proximate analysis alone, 
and both ultimate and proximate analyses data. The number of data 
points retained for each configuration for a given output feature are 
listed in Table 3. 

2.2. Hyper-parameter turning and model accuracy evaluation 

XGB and RF are the two algorithms retained for this work. The 
functioning of XGB algorithm is thoroughly described in some recent 
works [15,36] and more details about the RF algorithm can also be 
found elsewhere [17,37]. In this work, the models’ implementation was 
conducted via Scikit-learn python library. 

(https://scikit-learn.org/) supported on Anaconda (https://www. 
anaconda.com/). For both algorithms, only the number of trees (n_es-
timators) and the maximum depth of trees (max_depth) were optimized. 
The other parameters were left to their default values (xgboost version 
1.6.2 and scikit-learn version 1.1.2). 

The hyperparameters’ turning optimization was conducted using the 
“hyperopt” library (available optimization algorithm library that was 
integrated in python) with lower RMSE (Root Means Square Error) as 
the termination criterion. 

Before developing the models, the dataset was randomly split into 
two subsets, including 80% for training and 20% for testing. The accu-
racy of the models for both training and testing was evaluated using the 
Root Means Square Error (RMSE) (Eq. (6)) and the square of the cor-
relation coefficient (R2) (Eq. (7)). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
K

∑K

j=1

(
Yj,p − Yj,r

)2

√
√
√
√ (6)  

Table 1 
References for dataset building.  

Type of the SS Type of lignocellulosic biomass Refs 

SS Cornstalk [19] 
SS Cellulose [20] 
SS Xylan 
SS Lignin 
SS Water hyacinth [5] 
SS Pinewood sawdust [7] 
SS Pinewood sawdust [21] 
SS Fir sawdust [22] 
SS Oak sawdust 
SS Rice Straw [23] 
SS Banana stalk [4] 
SS Rice straw [3] 
SS Orange peel 
SS Peanut shell 
SS Fallen leaves 
SS Sawdust [24] 
SS Pinewood sawdust [25] 
SS Wood sawdust [26] 
SS Corn Stalk [27] 
SS Pinewood Chip [28] 
Digested SS Grass Clippings [29] 
Digested SS Privet Hedge 
Digested SS Woodchip 
SS biosolid Corn stover [30] 
Mixture of activated SS and dewatered SS Sawdust [31] 
Digested SS Hardwood sawdust [32] 
Digested SS Softwood sawdust 
Digested SS Sugarcane bagasse 
Digested SS Rice husk 
SS Rice straw [33] 
SS Sawdust [34] 
SS Corncob 
SS Cornstalk 

The data collected include the elemental composition of SS (carbon (Cs), 
hydrogen (Hs), nitrogen (Ns), oxygen (Os), and sulfur (Ss) contents), the prox-
imate analysis results of SS (volatile matter (Vs), fixed carbon (FCs) and ash (As) 
contents), the ultimate and proximate analyses results of the lignocellulosic 
biomass (Cb, Hb, Nb, Ob, Sb, Vb, FCb and Ab), the co-HTC reaction conditions 
(Reaction temperature (RT), reaction time (Rt), solid loading (SL)), the ratio of 
SS in the mixture (SSratio), the elemental and proximate analyses results of the 
hydrochar (Ch, Hh, Nh, Oh, Sh, Vh, FCh and Ah), the mass yield (MY) and energy 
yield (EY). As these works focused on co-HTC, the HTC conducted in these works 
with SS alone for control was considered as co-HTC with SSratio = 100%. All the 
data are on dry basis (wt.%, db), then Eq. (1) and Eq. (2) were verified. 

Table 2 
Output variables considered in the current work.  

Feature Name in the manuscript 

Carbon content in the hydrochar Ch (wt.%) 
Hydrogen to carbon ratio of the hydrochar H/Ch 
Oxygen to carbon ratio of the hydrochar O/Ch 
Nitrogen to carbon ratio of the hydrochar N/Ch 
Higher heating value of the hydrochar HHVh (MJ/kg) 
Fuel ratio of the hydrochar FRh 
Mass yield of the hydrochar MY (wt.%) 
Energy yield of the hydrochar EY (%)  

Table 3 
Dataset configuration employed for the model building.  

Input configurations Output features Number of 
datapoints 

Ultimate analysis + SSratio + HTC 
conditions 

Ch, H/Ch, O/Ch, N/ 
Ch and HHVh 

188 

FRh 155 
MY and EY 116 

Proximate analysis + SSratio + HTC 
conditions 

Ch, H/Ch, O/Ch, N/ 
Ch and HHVh 

156 

FRh 188 
MY and EY 92 

Ultimate and proximate analyses +
SSratio + HTC conditions 

Ch, H/Ch, O/Ch, N/ 
Ch and HHVh 

156 

FRh 155 
MY and EY 89  
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R2 =

∑K

j=1

(
Yj,p − Yp,avg

)
×
(
Yj,r − Yr,avg

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
∑K

j=1

(
Yj,p − Yp,avg

)2

]

×

[
∑K

j=1

(
Yj,r − Yr,avg

)2

]√
√
√
√

(7) 

K is the number of measured values; Yj,p is the predicted value; Yj,r is 
the real value measured; Yp,avg is the mean value of the predicted data 
vector; and Yr,avg is the mean value of the measured data vector. 

2.3. Analysis of the impact of input features on targets 

Once the models with optimum hyper-parameters were reached and 
their performances were confirmed, partial importance and partial 
dependance analyses were conducted to point out the impact of each 
input on the output. SHAP (Shapley Additive exPlanations), which is a 
game theory-based method was employed for the partial importance 
analysis. This method available in the scikit-learn toolbox treats each 
input variable value as a player in a game where the profit is the pre-
diction output. The SHAP values then tell us how to proportionally 
distribute the profit among the players. The partial dependence plots 
(PDP) were also plotted from the prediction model to show the specific 
average contribution of the most impactful input features. PDP displays 
the marginal impact of one or two input features on the outcome of a 
model. The mathematics behind the methods of PDP are well-described 
elsewhere [38]. 

3. Results and discussion 

3.1. Dataset characterization 

The ranges of features of the SS, the lignocellulosic biomass, and the 
hydrochar are presented in Table S1 of the Supplementary Material SM2 
and also represented in Fig. 1(a–g), and the reaction conditions explored 
for co-HTC are presented in Fig. 1h. From Fig. 1a and b, it can be 
observed that compared to SS, lignocellulosic biomasses exhibit higher 
carbon, oxygen, fixed carbon and volatile matter contents, while overall, 
their ash and nitrogen contents are lower. The high ash content of SS is 
attributed to inorganic species [39]. The high N of SS comes from the 
proteins that constitute a main compounds’ group for SS. The higher 
value of Cb, Ob, Vb and FCb compared to Cs, Os, Vs and FCs is under-
standable given that lignocellulosic biomass contains relative high 
contents of lignin, cellulose, hemicellulose and extractives [40], while in 
SS, relatively low cellulose and lignin contents have been reported be-
sides the high ash content [2]. The fixed carbon content of the hydrochar 
is improved when compared to both SS and biomass. This ensures an 
improved firing temperature and flame stability during combustion of 
the hydrochar, when compared to SS and biomass [10]. Vh and Ch are 
reduced when compared to Vb and Cb, while they are improved when 
compared to Vs and Cs. It can also be observed that the variation ranges 
of the elemental compositions and proximate analysis results of SS are 
larger than those for features of the lignocellulosic biomasses. This can 
be justified by the fact that the composition of SS is highly variable and 
depends on many various factors such as the seasons, the origins of the 
wastewater, the purifying processes used for the wastewater and the 
conditioning and stabilizing operations employed for the SS [2,41,42]. 
For e.g., it is reported that communal. 

wastewater has a higher content of pollutants than household 
wastewater due to the contribution of polluting compounds from in-
dustry [43]. Some works also reported that primary SS contains 5–27.58 
wt% total dry solids with 18.8–80 wt% volatile solid, 2–30 wt% protein, 
and 8–15 wt% cellulose [42,44], while secondary SS contains 0.8–25.36 
wt% total dry solids with 30.88–68 wt% volatile solid, 15–41 wt% 
protein, and 7–9.7% cellulose [44]. On average, dewatered SS contains 
50–70% organic matter, 30–50% mineral components, and 3.4–4.0% 
nitrogen [41]. 

Fig. 1d clearly shows that the HHVs is lower than HHVb, and the 
mixing of the feedstocks help to adjust the HHVmix of the mixture 
keeping it near the biomass structure as confirmed by the Van Krevelen 
diagram of Fig. 1e. From this diagram, it can be observed that the 
addition of biomass pushes the mixture into the region of biomass and 
going near to the structure of peat, while SS alone is mostly out of the 
region with higher H/C and O/C ratios. The reduced H/C and O/C ratios 
of mixtures will play a great role during HTC process and may explain 
the further reduced ratios observed for the hydrochars. The lowered H/C 
and O/C ratios will result in the reduction of smoke and water vapor 
during the combustion of the hydrochar [45]. The data for the mixture 
and the hydrochar in Fig. 1e also reveals that dehydration occurs more 
than decarboxylation and demethylation during co-HTC. This agrees 
with some recent reports that mentioned dehydration and depolymer-
ization to be among the top reaction promoted during HTC of high 
cellulose feedstock [46,47], probably promoted by the acidic interme-
diate compounds such as organic acids formed during the reaction. 

Fig. 1f depicts the N/C ratios of the various materials. It can be seen 
that SS exhibits a significantly higher N/C ratio (N/Cs) when compared 
to biomass (N/Cb). Theoretically, this can be attributed to the fact that 
Cs <Cb and Ns>Nb, as observed in Fig. 1a and b. Practically, lower N/C 
ratio is suitable for fuel application while higher N/C ratio traduces 
lower C content that may stimulate the release of microbial N and thus 
increase the crop-available N when the hydrochar is used for soil 
amendment [48]. The mixed feedstock as well as the derived hydrochar 
exhibit decreased N/C ratios (N/Cmix and N/Ch) but these ratios sill 
higher than that of the lignocellulosic biomass (N/Cb). N/Ch is more 
concentrated in a narrow range while variation range of N/Cmix is the 
largest. 

As depicted in Fig. 1g, the fuel ratio of SS (FRs) is located between 
0.023 and 0.14, and FRb is mainly located between 0.017 and 0.25. 
These values are lower than 0.33 and thus, both the SS and most of the 
biomass examined in co-HTC are non-stable solid fuels with a half-life 
<100 years [49]. After the co-HTC, some values of the FRh were 
improved to reach more than 0.33 as it can be observed from Fig. 1g. 
Overall, the addition of biomass to SS help to improve the properties of 
the mixture relatively to SS, but the resulting properties still lower than 
those of the hydrochar. Therefore, co-HTC is required for further 
improvement. 

3.2. Preliminary analysis before prediction 

Prior to the modelling, the Pearson correlation coefficients (PCCs) 
between all variables involved in the modelling process were evaluated 
and presented in Fig. 2a. It is revealed that between inputs and outputs, 
only SSratio exhibited higher PCC (>0.5) with Ch, H/Ch, N/Ch and 
HHVh. This instructs that SSratio is an important factor to estimate these 
features. EY exhibits significant PCC (0.72 and 0.6) with SL and Cb, 
respectively. MY exhibits significant PCC (0.58) with SL. However, the 
squares these PCCs are lower to provide accurate prediction of These 
features. 

The distributions of the output features are depicted in Fig. 2b. It is 
noticed that nearly Gaussian distribution tendencies can be seen for all 
of the output features, indicating that data close to the mean are more 
likely to occur than data far from the mean. This normal distribution 
tendency suggests the possibility of existence of accurate models for 
predicting these properties. 

3.3. Machine learning modeling 

The optimum parameters for all configurations explored are pre-
sented in Table S2. The hyperparameter tuning process of the best 
configuration revealed are presented in Fig. 3(a–h) and the properties 
and performance of the best optimized models obtained are summarized 
in Table 4. The performance of the modelling can be assessed on two 
ways including the impact of the co-HTC features and the impact of the 

O.S. Djandja et al.                                                                                                                                                                                                                              



Energy 271 (2023) 126968

5

Fig. 1. Characterization of the dataset of the SS, biomass, hydrochar and HTC conditions (a–h).  
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ML algorithms. 
On the side of the co-HTC features, the elemental compositions of SS 

and biomass combined with SSratio and HTC conditions exhibited the 
best performances for the prediction of Ch, H/Ch, O/Ch, N/Ch, HHVh, 
MY and EY, while for the prediction of FRh, the proximate analysis re-
sults of SS and biomass combined with SS ratio and HTC conditions was 
the best. On the side of examined ML algorithms, RF was best in 

predicting H/Ch, N/Ch and FRh, while XGB provided accurate predic-
tion for Ch, O/Ch, HHVh, MY and EY. Some other works also found XGB 
algorithm more accurate than RF for the prediction of HHV and yield of 
biocrudes from hydrothermal liquefaction of wet-biomass [15], and for 
the prediction of municipal solid waste generation in China [50], while 
in the work of Cheng et al. [16], RF was slightly better than XGB for the 
prediction of biocrude yield from hydrothermal liquefaction of organic 

Fig. 2. Pearson Correlation coefficients among variables (a) and distribution of the target variables (b).  
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wastes. 
The correlation plots between the predicted and experimental values 

of the various outputs for the training and test datasets are depicted in 
Fig. 3(i–p). The blue line (y = x) indicates that the prediction values 
equal to the actual value, and the closer of the dots to this line reflects 
the better prediction performance. As it can be seen, all the prediction 
vs. experimental training and test points exhibits good performances. All 
models show a higher prediction accuracy on the training dataset when 
compared to that observed for the testing dataset, as previously noticed 
[18]. This is due to the fact the model is not fit directly to the test data, 
and the effect of the test is to de-tune the model to minimize over fitting 

[16]. 
The findings from this modeling implies that XGB and RF algorithms 

can be effectively applied for model development for the prediction of 
Ch, H/Ch, O/Ch, N/Ch, HHVh, FRh, MY and EY of hydrochar produced 
from the co-HTC of SS and lignocellulosic biomass, based on feedstocks 
characteristics (ultimate and proximate analyses properties), SS ratio in 
the co-feedstock and co-HTC conditions (reaction temperature, reaction 
time, solid loading) as input variables. The accuracy of a model can be 
increased by choosing more pertinent input variables, while adding 
unnecessary input variables might easily mislead the model. Referring to 
the feedstocks properties, elemental analysis results are found relevant 

Fig. 3. Hyperparameters’ optimization step (a–h) and performances plots (i–p) of the best models obtained for the prediction.  
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features for the prediction of Ch, H/Ch, O/Ch, N/Ch, HHVh, MY and EY 
while the proximate analysis properties are the most relevant features 
for the prediction of FRh. The superiority of XGB over RF for some 
outputs and the superiority of RF over XGB for other outputs can be 
justified by the mathematics of each algorithm and the properties of the 
data. 

3.4. Input features’ partial importance and interpretation of partial 
dependance analysis 

A scientist who wants to learn more about a model’s operation needs 
more information than simply evaluating its accuracy. Therefore, model 
explainability is crucial in the field of machine learning because it 
provides insight into how different input features affect prediction 
outcomes and identifies the most impactful features. For this goal, we 
used the SHAP approach. The partial importance quantified by the mean 
absolute SHAP value are quantified and grouped in four (04) categories 
of input features as presented in Fig. 4 and also presented with raw SHAP 
values for each input feature in Fig. 5(a–b) and Figs. S1 (a-f). 

The mean absolute SHAP values (bars in green color in Fig. 5(a–b) 
and Figs. S1 (a-f)) indicate the degree of impact without specifying if the 
impact is negative or positive. For the SHAP values (distribution in red 
and blue in Fig. 5(a–b) and Figs. S1 (a-f)), the horizontal position in-
dicates the degree and the direction of impact (lower or higher, negative 

or positive) of a given input variable. Red color indicates a high value of 
the variable, while the blue color indicates a low value. 

To provide further insight into the features’ impacts, partial depen-
dence plots (PDP) were reported for the most impactful features and 
presented in Figs. 6 and 7, and Figs. S2 and Fig. S3 of the supporting 
information. In fact, the functional relationship between one (one-way 
PDP) or two (two-way PDP) input variables and the prediction is rep-
resented by a PDP, which can also demonstrate whether the relationship 
between the target and the input variable is linear, monotonic, or more 
complex. While two-way PDP (Fig. 7 and Fig. S3) helps to look for in-
teractions between two input variables of interest, one-way PDP (Fig. 6 
and Figs. S2) demonstrates how the prediction depends on the values of 
one input variable of interest. 

As presented in Fig. 4, SSratio followed by the HTC conditions are the 
most impactful factors on H/Ch and N/Ch. SSratio is more impactful on 
N/Ch than H/Ch while HTC conditions are more impactful on H/Ch than 
N/Ch. The biomass properties are the most impactful for the O/Ch, and 
their impacts on the various output features decreased in the order of O/ 
Ch, MY, Ch, H/Ch, FRh, HHVh, N/Ch and EY. SS properties are the most 
impactful factors on the Ch, HHVh, MY and EY. The biomass properties 
impact more on MY than EY, while the impacts of SSratio and HTC 
conditions on these features are almost the same. For the FRh, HTC 
conditions are the most impactful, followed by the SS ratio. The impact 
of SS properties and biomass properties are almost the same. 

Table 4 
Best results of hyper-parameter optimization for various targets.  

Models Inputs Output RF algorithm XGB algorithm 

Maxdepth N_estimators RMSE Maxdepth N_estimators RMSE 

M1 Cs, Hs, Ns, Os, Cb, Hb, Nb, Ob, RT, Rt, SL, SSratio Ch (wt.%) 8 40 3.670 5 79 2.543 
M4 Cs, Hs, Ns, Os, Cb, Hb, Nb, Ob, RT, Rt, SL, SSratio H/Ch 13 36 0.053 2 30 0.064 
M7 Cs, Hs, Ns, Os, Cb, Hb, Nb, Ob, RT, Rt, SL, SSratio O/Ch 20 22 0.074 10 25 0.058 
M10 Cs, Hs, Ns, Os, Cb, Hb, Nb, Ob, RT, Rt, SL, SSratio N/Ch 18 22 0.006 10 19 0.008 
M13 Cs, Hs, Ns, Os, Cb, Hb, Nb, Ob, RT, Rt, SL, SSratio HHVh (MJ/kg) 18 52 1.567 3 54 1.174 
M17 Vs, FCs, As, Vb, FCb, Ab, RT, Rt, SL, SSratio FR 18 85 0.054 3 77 0.066 
M19 Cs, Hs, Ns, Os, Cb, Hb, Nb, Ob, RT, Rt, SL, SSratio MY (wt.%) 10 44 8.082 2 61 6.551 
M22 Cs, Hs, Ns, Os, Cb, Hb, Nb, Ob, RT, Rt, SL, SSratio EY (%) 18 37 7.065 8 49 6.117  

Fig. 4. Partial impact of features.  
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As it can be seen from Fig. 5 and Figs. S1, SSratio is the most im-
pactful factor for many outputs. Fig. 5a shows that SSratio is the most 
impactful feature on Ch, followed by Cb, Cs, SL, Cb. Higher values of 
SSratio exhibits significant negative impact on Ch, while lower values of 
SSratio exhibits low positive impact on Ch. Opposite effect is observed 
for Cb, Cs, SL, RT. Reaction time (Rt) exhibits almost no effect on the Ch. 
The PDP plot in Fig. 7a confirms that Ch increased with both Cs and Cb, 
while Fig. 7b reveals that for Ch, SSratio is more impactful than RT, and 
Ch increases with RT while decreases with SSratio. Similar impact 
properties are observed for HHVh (Fig. S1c). This is probably due to Eq. 
(3) that was used to evaluate HHVh and in which Ch has a great share. 

Fig. 5b shows that SSratio is the most impactful features on H/Ch, 
followed by RT, Cs, Os, SL. Higher values of SSratio exhibits significant 
positive impact on H/Ch. Overall, opposite impact as compared to the 
impact on Ch was observed for many features including RT, Cs, Cb, Os. 
This is understandable, as higher Ch would lower H/Ch. Although 
higher SSratio positively impact on the H/Ch and N/Ch ratio, its impact 
on the O/Ch is negative. This is confirmed by the PDP plots depicted in 
Figs. S2(b, c, d). This can be attributed to two reasons. On one hand, it 
can be assigned to the lower Os and higher Ns, relatively to Ob and Nb, 
as presented in Fig. 1(a and b). Therefore, higher SSratio would bring 

lower oxygen in the reaction system that would lead to lower Oh and 
thus lower O/Ch. On the other hand, the presence of ammonia-N in SS 
could lower the Oh via C––O conversion into C–N and C––N. 

Fig. S1b states that the N/Ch is more dependent on SSratio, RT, Ns, 
and Nb. Higher Ns showed positive impact on N/Ch. This agrees with the 
impact observed for the SSratio, as higher SSratio will bring more Ns to 
the solid in the reactor. Higher values of RT impact negatively on the N/ 
Ch. This can be assigned on one hand to the increase carbonization with 
increasing temperature that leads to increase Ch, and on the other hand, 
to the devolatilization that occurs with increasing temperature and can 
release a part of nitrogen in the form of gas or in the liquid phase. It can 
also be observed that compared to values of Ns, higher values or lower 
values of Nb would impact more N/Ch. This is confirmed by the two-PDP 
presented in Fig. 7c exhibits an increase of N/Ch with increasing of both 
Ns and Nb. However, the increase of N/Ch is more pronounced with 
increasing Nb. Same trend is observed in Fig. 7(d and e). This is probably 
related to the predominant organic-nature of Nb that may lead to more N 
in the hydrochar, while Ns contains more inorganic-N that is easily 
releasable either in water phase or in gas phase. A recent work also 
noticed that the resolidification of N in the aqueous phase into solid 
phase via polymerization and heterogeneous bonding reaction was 
enhanced with increased corn stalk amount in the reaction system of co- 
HTC with SS [19]. Fig. 7(d and e) also show a sharp decrease of N/Ch at 
temperatures around 175 ◦C and a slight decrease is maintained for 
temperatures above. However, Fig. 7f reveals that the effect of tem-
perature on N/Ch is related to SSratio. Higher SSratio at lower tem-
perature leads to high N/Ch, while the N/Ch significantly decreases for 
temperature above 235 ◦C even at high SS ratio. This confirms that the 
addition of lignocellulosic biomass is a good way to reduce N/Ch. 

For FRh (Fig. S1d), HTC reaction conditions are the most impactful 
features, followed by FCs and FCb. Higher values of SSratio negatively 
impact FRh, as confirmed by the PDP in Fig. S2f. This is attributed to the 
fact that carbon is more fixed in lignocellulosic biomass than in SS. The 
impact distribution observed for RT is partly ascribed to the devolatili-
zation that would reduce the volatile matter in the solid hydrochar and 
thus leads to a concentrated FCh resulting in increased FRh according to 
Eq. (4). In difference to the other models, the reaction time (Rt) 
appeared as the third most influential factor on FRh. Longer reaction 
time may promote FRh and thus the stability of the hydrochar through 
an increase of the FCh and reduction of the Vh as recently noticed [51]. 

Reaction temperature is the most impactful factor among the various 
HTC conditions and exhibits a significant effect on various properties of 
the hydrochar. Higher reaction temperature and longer reaction time 
may lead to higher reaction severity of the dehydration, hydrolysis, 
decarboxylation and higher breakdown of the feedstock, resulting in 
increased Ch, HHVh and FRh [45,52]. As it can be seen from Fig. 5b and 
Fig. S1a, RT is slightly more impactful on O/Ch than H/Ch, claiming that 
compared to dehydration reactions, decarboxylation reactions are more 
governed by the HTC temperature during co-HTC of SS and lignocellu-
losic biomass. This corroborates the finding of Borbolla-Gaxiola et al. 
[51] when these authors employed multi-variate and multi-response 
analysis of HTC of food waste for temperatures in 180–260 ◦C. The re-
sults depicted in Fig. 6 let speculate that during the co-HTC, the 
carbonization reactions are initiated from around 180 ◦C. 

The impact of reaction time on various outputs is presented in Fig. 6 
(g–l). Prolonged reaction time may promote the decomposition of cel-
lulose and hemicellulose [53], lowering the amount of 
oxygen-containing surface functionalities on the hydrochar, and this 
effect would be more enhanced at higher temperature [54]. The longer 
reaction time may also promote the decomposition of aliphatics, alco-
hols, sugars, and aromatics in the water and the integration of the de-
rivatives compounds within the hydrochar. This can justify the 
improved FRh with increased reaction time (Fig. 6l). The reduction of Ch 
at excess reaction time is probably due to the enhanced decomposition 
of compounds that are directed to the liquid phase at lower temperature 
or to the gas phase at high temperature. 

Fig. 5. Input features’ partial impact on the various outputs: a) Ch, and b) 
H/Ch. 
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The impact of solid loading on various outputs is presented in Fig. S2 
(i-o) and can be attributed to two reasons. On one hand, the lower liquid 
content may facilitate the generation of secondary char and improve the 
reaction severity due to the high acidity in the reaction system caused by 
the concentrated intermediates. On the other hand, lower liquid content 
inhibits the relative interactions among molecules of the feedstock and 
water, and that may suppress the dissolution of some compounds of the 
feedstock. These observations are in line with previous findings which 
reported that compared to liquid-based HTC process, vapor-based pro-
cess further improved the degree of coalification and the stability of the 
hydrochar from dairy manure [55]. Increased solid loading for a high 
ratio of SS (high-protein content in the co-feedstock) could improve the 
alkalinity in the reaction system via the deamination of the proteins 

while at lower SS ratio increase solid loading may improve the acidity of 
the reaction system via the decomposition of carbohydrate compounds. 
These mechanisms may result in the change of the pH of the reaction 
system that may lead to some further catalytic activities. Therefore, the 
solid loading should be made in accordance with the properties of the 
feedstock, the reaction temperature, and the expected use of the 
hydrochar. 

Overall, the observations from the PDP are in line with those from 
SHAP method analysis. SSratio exhibited monotonic relationship with 
almost all features (Figs. S2(a-g)) except EY (Fig. S2h). Increasing 
SSratio decreases Ch, O/Ch, HHVh, and FRh, while increasing H/Ch, N/ 
Ch, and MY. The complex relationship between SSratio and EY maybe 
related to the properties of mixture feedstocks (biomass and SS) that 

Fig. 6. One-way Partial Dependance Plots for reaction temperature (RT) and reaction time (Rt) on various outputs.  
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intervenes in Eq. (5). SS contains lower carbon, hydrogen and oxygen 
contents than biomass, but SS properties are the most impactful factor 
on Ch and HHVh. In fact, a feature can positively impact on an output 
but this positive impact can be inhibited by the impact of other features, 
as the HTC reaction is a result of various cross-impact of many features 
involved. Therefore, the impacts of the various inputs could not be 
foreseen and the partial dependance analysis has been a valuable tool. 

3.5. Online graphical user interface for prediction of hydrochar properties 

To easy the use of our solution by other researchers, we have 
developed an online graphical user interface and some screenshots are 
presented in Fig. 8. This prediction tool is developed basing on the best 
models retained from the prediction and can be used from the following 
link: (https://strategefil-cohtc-cohtc-fuel-n2lxgw.streamlit.app/). The 

code behind is based on XGB and RF algorithms implemented with py-
thon programming language and Scikit-learn library. Researchers could 
enter the properties of SS and lignocellulosic biomass, the co-HTC con-
ditions and the ratio of SS, and the developed online tool will help to 
predict the various properties of the hydrochar. 

3.6. Outlook of the current study 

The models developed in this study can be used to instruct re-
searchers for the co-processing of sewage sludge and lignocellulosic 
biomass to produce hydrochar with desirable properties such as mass 
yield, C content, H/C ratio, O/C ratio, N/C ratio, fuel ratio, higher 
heating value, and energy yield. This could greatly help save time and 
resources usually allocated for many trials experiments. Despite the 
good prediction results observed in this work, the following additional 

Fig. 7. Two-way Partial Dependance Plots: a) dependance of Ch on Cs and Cb, b) dependance of Ch on RT and SSratio, c) dependance of N/Ch on Ns and Nb, d) 
dependance of N/Ch on RT and SSratio, e) dependance of N/Ch on Ns and RT, f) dependance of N/Ch on Nb and RT. 
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considerations should be made to enhance the generalization of the 
models.  

i. More data should be collected to increase the size of the dataset.  
ii. While the input parameters considered are reasonable, other 

variables such as catalyst types and loading amounts should be 
considered to enhance model generalization. The structural 
analysis results (contents of cellulose, hemicellulose, lignin, and 
proteins) of the sewage sludge and biomass can also be examined.  

iii. The output variables can also be expanded. As the hydrochar is 
also used for carbon material synthesis, surface properties (such 
as surface area, pore volume, pore size, and density) and chemical 
O- and N-functionalities of the hydrochar can be considered.  

iv. The contents of heavy metals with potential risk of ecotoxicity 
can be considered. 

4. Conclusion 

The objective of this work was to accurately estimate the fuel 
properties of hydrochar produced from co-HTC of SS and lignocellulosic 
biomass and to offer insights into the impact of the process parameters. 
XGB and RF as machine learning algorithms were used to investigate 
features such as the elemental and proximate analyses of sewage sludge, 
the elemental and proximate analyses of lignocellulosic biomass, the SS 
ratio of the dry matter in the reaction system, and the co-HTC conditions 
(reaction temperature, reaction time, and solid loading). When 
comparing input features, it can be seen that the elemental compositions 
of SS and biomass combined with SS ratio and HTC conditions were 
sufficient for an accurate prediction of Ch, H/Ch, O/Ch, N/Ch, HHVh, 
MY, and EY, whereas the best prediction of FRh was obtained from the 
proximate analysis results of SS and biomass combined with SS ratio and 
HTC conditions. XGB outperformed RF in the prediction of Ch, O/Ch, 
HHVh, MY, and EY, while RF excelled in the prediction of H/Ch, N/Ch, 
and FRh. The partial importance analysis revealed that biomass prop-
erties have the greatest impact on O/Ch, while SS properties have the 
greatest impact on Ch, HHVh, MY, and EY. The FRh is the only feature 
where HTC conditions have the greatest impact. 
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