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a b s t r a c t

The hydrochar produced from hydrothermal carbonization(HTC) of sewage sludge (SS) usually has a high
phosphorous (P) content, and that would result in fouling and energy efficiency reduction. Therefore, it is
important to monitor the P content during the hydrochar production process. This work suggests a data-
driven Random Forest-based model to predict the total P content in the hydrochar (TP-hc) from the HTC
of SS. Various configurations of inputs features were examined, including the data of proximate analysis,
ultimate analysis, ultimate and proximate analyses, and for each configuration, either if the total P in the
SS (TP-ss) was known or not. Overall, the models including TP-ss as input have accurately predicted the
TP-hc with an R2 located in [92e95%]. Features’ importance approach and partial dependence analysis
pointed out that the TP-ss, ash content, reaction temperature (T), reaction time (t), and initial pH of
feedwater exhibit positive effect on the TP-hc. In contrast, contribution of the volatile matter (VM) of SS
was mostly negative. Dry matter loading exhibits no obvious monotonicity with TP-hc. This work could
guide the production of SS-hydrochar with the desired P content, and thus avoid time and resources
consuming for many trials.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Phosphorous (P) is one of the most common macronutrients in
commercial fertilizers that are needed for sustaining plant growth
and maximum crop production. Every year, approximately 15
million tons of fertilizers containing P are used worldwide on
farmland [1]. Generally, P is an essential nutrient for animals and
of Energy Chemical Process
Technology, Xi'an Jiaotong

Environmental Pollution and
graphy, Chinese Academy of
humans as it is used in agriculture, pesticides, laundry detergents,
matchstick, steel production, and the smooth functioning of the
human body. In China, about 50 kg/ha/year was reported as input to
the cropland in 2018 [2]. P is also the staff of life as it enables the
synthesis of adenosine triphosphate (ATP), ribonucleic acid (RNA)
and deoxyribonucleic acid (DNA). However, P is a finite nutrient
obtained mainly from non-renewable rocks (phosphate rock is the
primary source of P) concentrated in a few countries. As modern
agriculture is more dependent on the availability of P based
chemical fertilizer, the distorted distribution of P resources in-
fluences the trend of agricultural and food development through
the fluctuating and unstable price of phosphate rock [3]. Also, the
running out of P natural resources (estimated to be depleted in
50e100 years [4,5]) makes the availability of P-one of the most
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List of acronyms and abbreviations

SS Sewage sludge
HTC Hydrothermal carbonization
TP-ss Total phosphorous content in the sewage sludge
TP-hc Total phosphorous content in the hydrochar
IP Inorganic phosphorous
OP Organic phosphorous
OM Organic matter content (wt.%, db) of the sewage

sludge
VM Volatile matter content (wt.%, db) of the sewage

sludge
FC Fixed carbon content (wt.%, db) of the sewage sludge
Ash Ash content (wt.%, db) of the sewage sludge

C Carbon content (wt.%, db) of the sewage sludge
H Hydrogen content (wt.%, db) of the sewage sludge
N Nitrogen content (wt.%, db) of the sewage sludge
O Oxygen content (wt.%, db) of the sewage sludge
t Reaction time (min)
T Reaction temperature (�C)
DM Dry matter loading (wt.%)
PCC Pearson correlation coefficient
ML Machine learning
RF Random Forest
RMSE Root mean square error
R2 Square of the correlation coefficient
SHAP Shapley additive explanation
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severe challenges that confront the world now and in the future. To
overcome these challenges, growing interest in achieving more
sustainable P has led to a focus on reclaiming P from biowastes such
as sewage sludge (SS).

In fact, through wastewater treatment plants, a high proportion
of P consumed by human activities is subsequently retained in SS.
As the amount of SS is increasing over the years with population
and urbanization growing, SS is gaining attention as an alternative
renewable source of P. The amount of P-rich SS has risen consid-
erably in recent years, and a further increase is expected [5]. The
current wastewater treatment technologies provide the opportu-
nity to retain up to 96% of the influent P in the SS [6]. The total
content of P in SS also depends on the location and the type of SS.
Among various organic wastes, SS exhibits the second-largest
amount of P, after the bone meal (this one is produced in lower
amount, compared to SS) [7]. Generally, compared to lignocellulosic
biomass, SS has a high level of P [8]. SS is therefore seen as a
promising renewable source of P.

The elemental P contained in SS grants it a fertilising ability,
while its organic matter can also act as a suitable soil conditioner.
However, it is urged that a proper pretreatment of SS is carried out
before its disposal in farm lands. Besides its ability of P and other
nutrients supply, SS contains other compounds that represent risks
for the environment and human beings. Also, SS has quick P
liberation rates that may surpass the needs of crops and/or the
retention ability of soils, resulting in P losses and eutrophication of
water bodies [9]. Many studies and a number of full-scale in-
stallations implemented in some countries show that the
reclaiming of P from SS is technically achievable [10,11], but can face
some challenges. Recently, many studies have been directed to-
wards hydrothermal carbonization (HTC) as a benign process for
both P recovery and alleviation of energy crisis.

HTC is a process with low environmental risks that not only can
remove and destroy potentially hazardous substances in SS, but
also has the ability to enable P recycling even in the case of ener-
getic use of hydrochar. This process takes place in hot compressed
water at temperatures usually ranging in (180e260 �C) and
autogenous pressures (2e10 MPa), and accept high moisture SS
without pre-drying. Compared to SS, the resulting hydrochar ex-
hibits better storage properties, given that it is more hydrophobic
and more biologically inert. Compared to SS, P content in the
hydrochar increases with HTC reaction severity as precipitated
phosphate salts [12]. Both high content and lower content of P in
hydrochar can be preferred according to the application of hydro-
char. On the one hand, the high content of P in the hydrochar is
advantageous both for its use as a soil conditioner as well as for its
combustion for energy production (as P could be recovered from
2

the ash) [12,13]. The relatively lower solubility of P in hydrochar
could be a new and promising strategy for addressing the SS-
related P loss problem [14]. Hydrochar's microporous structure,
surface functional groups, and intrinsic minerals may improve the
ability of the soil to absorb and retain nutrients, potentially pre-
venting P loss and thus improving the plant's P use efficiency [15].
On the other hand, the removal of P from hydrochar reduces the
fouling of the hydrochar, therefore, increases its energy efficiency.

Although HTC had recently become a hot pot technology for SS
management and P reclamation, reaction mechanisms and chem-
ical states of P during the process still need further understanding.
In fact, the P content in hydrochar is impacted by many features,
including the chemical composition of SS and the HTC reaction
conditions (temperature, time, pH of the process water, and dry
matter concentration). The optimized point of the process is always
obtained after many experiment trials, which leads to time con-
sumption and resource wastage. The values of parameters investi-
gated and the composition of the SS vary from one research to
another, making it difficult to have a global understanding of the
influence of each parameter. Therefore, in this new era where the
term Industry 4.0 is attracting more attention, a Machine Learning-
based model to facilitate a global understanding of the impact of
each of the above-mentioned parameters and predicting the con-
tent of P in the hydrochar for optimized conditions prior to the
experiment would help to make significant progress in designing
HTC reactions. This study aims to suggest a data-driven Machine
Learning model based on Random Forest (RF) algorithm for pre-
dicting the total content of P in hydrochar from SS. This algorithm
has been successfully implemented in many cases, such as the
prediction of the carbon content and the higher heating value of
hydrochar [16] and energy recovery from hydrochar [17] derived
from wet organic wastes, the prediction of the bio-oil yield and its
hydrogen content [18] and carbon content and yield of biochar [19]
from biomass pyrolysis, and the uncertainty and sensitivity ana-
lyses of co-combustion/pyrolysis processing of biowastes [20].
However, no particular attention has been given to the P migration
during hydrothermal carbonization of SS. In this work, input fea-
tures including proximate analysis results (fixed carbon, ash and
volatile matter contents), elemental composition (C, H, N, O), and
the total P content in SS (TP-ss), and HTC reaction conditions (re-
action temperature, reaction time, initial pH of the feedwater, and
the dry matter content in the reactor) collected from a systematic
literature review, were employed to build RF based models for the
prediction of the total content of P in the hydrochar (TP-hc). The
features’ importance was analyzed and discussed. This work could
guide the computational selection of reaction conditions associated
with the properties of a given SS to reach a desired amount of P in
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hydrochar quickly.

2. Methodology

2.1. Data collection and pre-processing

The dataset was built from a systematic review of the literature.
Published papers were extensively researched from databases
(Google Scholar, Web of Sciences, ScienceDirect and Scopus) using
keywords sewage sludge or wastewater combined with hydrochar,
hydrothermal carbonization, hydrothermal treatment, hydrother-
mal conversion, hydrothermal decomposition, subcritical water
conversion or thermal hydrolysis. The target papers were down-
loaded from publishers’ websites. Only experiments conducted in
subcritical conditions were included in the dataset. A total of 23
papers reporting 26 various sewage sludge with 185 data points for
hydrochar was retained for the characterization of P contents in
sewage sludge and hydrochar. In this dataset, 109 data points that
provide complete information on the proximate analysis (volatile
matter (VM (wt.%)), fixed carbon (FC (wt.%)), and ash (wt.%))),
elemental analysis (C(wt.%), H(wt.%), N(wt.%), O(wt.%)) and the TP-
ss (mg/g)) of the SS, the HTC reaction conditions (including tem-
perature (T (�C)), time (t (min)), initial pH of the feedwater and the
dry matter content (DM (wt.%))), and the TP-hc (mg/g)), were
considered for designing the model. The details of the whole
dataset are provided in the supporting information S1. The DM
represent the solid concentration relative to the total feed in the
reactor. The properties of the SS and the hydrochar are on a dry
weight basis.

2.2. Predictive modelling and evaluation

2.2.1. Random forest approach
The RF method can be used for problems involving classification

or regression analysis. The RF for regression is a bagging ensemble
learning method that builds a multitude of regression trees and
then aggregates them to output a final prediction [21,22]. It is an
improvement of the decision tree method [23]. During training,
sub-samples are randomly gathered from the predictors' training
samples through bootstrap sampling, and the forest grows several
trees to match the gathered sub-samples [24]. This reduces the risk
that the same strong predictor variables are selected when a split is
to be performed, thus preventing the regression trees from being
too correlated [25]. The final prediction is obtained from the
average of the outputs of all individual decision trees, with minimal
variance and better generalized predictive ability [22]. The basics of
these methods are depicted in Fig. 1. The RF algorithm is described
in detail in Ref. [23].

In this work, the RF algorithm was implemented using the sci-
kit-learn library (https://scikit-learn.org/stable/#), which is based
on Anaconda (https://www.anaconda.com/) and using python
programming language (Python 3.8.5). In the RFmodel, the number
of estimators (number of trees in the forest) and the Max_depth
(the maximum depth of the tree) are the main parameters [24]. In
practice, it is recommended to set a large number of decision trees,
allowing the convergence of the prediction error to a stable mini-
mum [25]. Therefore, the number of decision trees was set in the
range of 50e500, and the Max-depth was set in 2e30. The other
parameters were set to default values (as presented in the sup-
porting information S2). The optimization was conducted using
twomethods, including, on one hand, the grid searching and 5-fold
cross-validationmethod, and on the other hand, the combination of
the values of these hyperparameters two-by-two.

Six (06) various configurations of the input features were
assessed. These configurations include the data of proximate
3

analysis alone as inputs, ultimate analysis alone, both ultimate and
proximate analyses, and for each of these three configurations,
whether the TP-ss is known or not. The dataset was randomly split
into two subsets for each running, including 70% used for training
and the remaining 30% used for the model validation. For each
configuration and a given couple (number of trees, Max-depth), the
model was run 100 times to ensure the convergence of the pre-
diction error. The accuracy of the model was evaluated using the
square of the correlation coefficient (R2), and the Root Means
Square Error (RMSE).

2.2.2. Partial importance and dependence
Once the accuracy of the model is confirmed, partial importance

was conducted to measure each predictor variable's effect on the
response variable (TP-hc). For this purpose, an extension of the
Shapely values from game theory called SHAP (Shapley Additive
exPlanations) was used. This method with the scikit-learn toolbox
is a helpful tool to have insight into the results of a Machine
Learning prediction model [22]. According to this method, each
input variable value is a player in a game where the prediction is
the profit. Then the Shapley values tell us how to distribute the
profit among the predictors proportionally. The partial dependence
plots were also plotted from the prediction model (these plots are
not the scatter plots).

3. Results and discussion

3.1. Characterization of P in sewage sludge

The TP-ss is subdivided into inorganic P (IP) and organic P (OP).
The characterization of TP, IP, and OP fractions of SS and hydrochar
are presented in Fig. 2a. As depicted in Fig. 2a, IP is themain fraction
of the TP-ss. This claims that the P in SS is mainly chemically
complexed with inorganic metals contained in the ash of the SS.
These metals mainly include Al, Ca, Mg, Fe and Mn. The OP content
is still very lower. This is supported when observing from the violin
plot of Fig. 2b that at high organic matter (OM) content in SS, lower
TP-ss is observed, while the inverse is observed for the ash content.
From Fig. 2a, one can also notice that IP is also the major fraction of
the total P in hydrochar (TP-hc). This supports that the interactions
between inorganic metals and TP-ss are of great importance in
controlling P migration to the hydrochar under various HTC reac-
tion conditions.

3.2. Modelling dataset description

To elaborate the model, 109 datapoints providing complete in-
formation on the proximate analysis, elemental analysis and the
TP-ss contents of the SS, the HTC reaction conditions, and the TP-hc
are considered. The choice of these features is based on the fact that
they have been found to impact the TP-hc. The statistical indicators
of these factors are presented in Table 1, and their distribution is
depicted by violin and swarm plots in Fig. 2c and d. As shown in
Table 1, for most of the input features, the mean, the median and
the mode are very close. This reveals that these data follow trends
of symmetrical distribution and can therefore be fitted by a
Gaussian function. The TP-ss, TP-hc and FC present skewness
properties. For e.g., for FC, the mean is greater than the median, and
the median is greater than the mode, pointing out a positive
skewness of its distribution.

The correlation matrix between variables is depicted in Fig. 3. A
higher Pearson Correlation Coefficients (PCC) of 0.88 is observed
between TP-ss and TP-hc. This claims the great dependence of TP-
hc on TP-ss. However, the squared PCC (0.79) shows that this
relationship is insufficient for estimating the TP-hc from TP-ss. VM

https://scikit-learn.org/stable/#
https://www.anaconda.com/


Fig. 1. Random Forest method implementation.
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exhibits a significant relationship with both FC and Ash contents.
This is attributed to the fact that the data are on a dry basis, and
VMþ FCþ Ash¼ 100 for each observation. Similarly, Ash, C, H, N, O
exhibit significant relationships between each other due to the
relationship ash þ C þ H þ N þ O ¼ 100.
4

3.3. Model development and accuracy

For the model development, the optimization was conducted
using two methods. First, the grid searching and 5-fold cross-
validation method were employed. Second, the combination of
hyperparameters two-by-two was examined. Although the first



Fig. 2. Characterization of P in SS and hydrochar (a) 09 various SS and corresponding 51 datapoints for hydrochar; b) 24 various SS and corresponding 176 datapoints for
hydrochar); c) and d) Distribution of parameters of the dataset considered for modelling.

Table 1
Statistical indicators of the data employed for modelling.

Min Max Mean Std Mode Median

VM (wt.%) 8.00 72.48 46.11 18.09 47 48.42
Ash (wt.%) 14.96 68.91 42.64 14.05 41 42.94
FC (wt.%) 0.10 49.10 11.20 14.60 5 6.655
C (wt.%) 17.83 45.96 29.40 7.36 28 28.215
H (wt.%) 3.16 6.57 4.43 0.91 5 4.3
N (wt.%) 2.34 7.15 4.24 1.29 4 3.935
O (wt.%) 7.36 27.61 18.54 5.52 19 18.89
TP-ss (mg/g) 5.22 45.80 21.38 11.98 6 22.738
T (�C) 160.00 280.00 221.93 29.23 220 220
t (min) 30.00 600.00 115.14 80.02 120 120
Initial pH 3.00 13.00 7.37 1.59 7 7.01
DM (%) 2.61 25.00 10.89 5.90 10 10
TP-hc (mg/g) 6.20 63.00 29.44 15.05 20 31.1
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method provided a lower number of trees and max-depth for most
of the models, the variation of the error increased after many trials
by using the selected hyperparameters. Therefore, the second
method was employed, and for each couple of (number of trees,
Max-depth), each model was run 100 times, and the minimum and
maximum of the R2 and RMSE were reported (see the supporting
information S1). The best couple of hyperparameters and the per-
formances for each configuration, based on both training and
validation, are reported in Table 2. The results revealed the
remarkable ability of the Random Forest algorithm in predicting TP-
hc. Although all models show great performances for training,
5

validation performance becomes worse when the TP-ss is not
included as input feature. This points out once again the main
contribution of TP-ss for TP-hc. The models including TP-ss as input
(model 1, model 3 and model 5 from Table 2) can predict the TP-hc
with R2 > 0.92, with model 5 providing the best prediction (the R2

and RMSE were primarily stable over 100 runs). When the TP-ss is
not included, the prediction performances decreased in the order of
model 6 (knowing both elemental and proximate analysis), model 2
(knowing only proximate analysis) and model 4 (knowing only
elemental analysis). The superiority of model 2 over model 4 may
be attributed to the ash content. The correlation plots between the
predicted and experimental TP-hc for the models are depicted in
Fig. 4.
3.4. Features’ importance

To analyze the importance of each input feature on the output
(TP-hc), SHAPmethodwas used. Only the superiormodels obtained
when TP-ss is either included or not (model 5 and model 6) were
considered. The impacts of each input feature on the TP-hc are
depicted in Fig. 5. For Fig. 5a and b, the horizontal position indicates
the degree and the direction of impact (lower or higher, negative or
positive) of a given predictor variable. The red color indicates a high
value of the variable, while the blue color indicates a low value. A
positive SHAP value indicates that the predictor positively in-
fluences the output. Fig. 5c and d quantify the impacts of each
input. One can notice that when TP-ss is considered, the



Fig. 3. Pearson correlation coefficients (PCCs) of any two variables.

Table 2
Optimum parameters and corresponding performance obtained from hyperparameters’ turninga.

Input features Estimators Max_depth Training Validation

R2 Min R2 Max RMSE Min RMSE Max R2 Min R2 Max RMSE Min RMSE Max

Proximate with TP-ss (model 1) 100.00 10.00 95.54 96.60 2.77 3.17 92.11 94.73 3.44 4.44
Proximate without TP-ss (model 2) 500.00 20.00 94.34 95.19 3.30 3.57 80.36 83.09 6.12 6.60
Ultimate with TP-ss (model 3) 100.00 10.00 96.17 96.86 2.66 2.94 92.37 94.54 3.48 4.11
Ultimate without TP-ss (model 4) 100.00 15.00 95.26 96.20 2.93 3.27 78.52 82.99 6.14 6.90
All data with TP-ss (model 5) 300.00 5.00 94.88 95.33 3.25 3.40 93.22 94.46 3.50 3.88
All data without TP-ss (model 6) 200.00 25.00 94.99 96.10 2.97 3.36 80.94 85.31 5.71 6.50

a The minimum and maximum are obtained after 100 runs of each model, R2 is in %, RMSE in mg/g.
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temperature followed by the DM are the most influential HTC re-
action conditions. However, with the absence of TP-ss, the DM
become more influential than the temperature. This can be
explained by the fact DM has a great relationship with the amount
of TP-ss loaded in the reactor. A similar explanation can be given to
the improvement in the impact of ash observedwhen TP-ss was not
considered. When TP-ss was included, the contribution of the
proximate analysis was lower than that of the HTC reaction con-
ditions, while the inverse was noticed without TP-ss as an input.
6

3.5. Partial dependence analysis and interpretation

To provide more insight into the features’ impacts, partial
dependence analysis was conducted for model 5 (the best model).
Note that the partial dependence analysis consists in adjusting one
predictor or two predictors for predicting the output, while the
other inputs are constrained to the mean values. For the most
influential features, the one-way partial dependence plots obtained
from the prediction with model 5 are depicted in Fig. 6, and the



Fig. 4. Comparison of the experimental and predicted (by the various RF models) values of TP-hc: (a) Model 1; (b) Model 2; (c) Model 3; (d) Model 4; (e) Model 5; (f) Model 6.
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two-ways partial dependence plots are reported in Fig. S1 of the
supporting information S2.

Obviously, the TP-hc increased with increasing TP-ss (Fig. 6a).
From the side of the proximate analysis components (Fig. 6b-d), TP-
hc has an increasing trend with increasing ash content, while it
exhibits a decreasing trend with the increasing of VM and FC. The
7

positive contribution of ash would mainly be linked to its contents
of some metals such as Ca and Mg, which significantly promote the
precipitation of P as PO4

3� on the hydrochar surface [26e28], with
increasing temperature. The decreasing of TP-hc with increasing
VM and FC is understandable, given that IP is the main fraction of
TP-ss, and a high organic matter (VM and FC) lowers the ash



Fig. 5. Impact of predictors on the model output (TP-hc) according to the RF model, based on SHAP method: (a) SHAP value distributions for model 5; (b) SHAP value distributions
for model 6; (c) Mean absolute SHAP values for model 5; (d) Mean absolute SHAP values for model 6.
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content followed by a reduced TP-ss. Also, a high carbohydrates
content in SS could release a high amount of acids during HTC,
which may drop the pH of the process water, and therefore
inhibiting the P transfer to the hydrochar. The opposite effect could
be observed for high protein SS. Some positive values observed for
FC can be explained by the fact that during HTC, the microbial cells
and salts contained in SS could be thoroughly mixed, promoting
interaction between dissolved cations and the hydrolyzed intra-
cellular polyphosphate [29]. This let us also believe that OP would
be mainly associated with FC in some SS samples. This is supported
by the positive contribution observed for the C content (Fig. 6e).

On the side of HTC reaction conditions (Fig. 6f-i), the TP-hc
increased with increasing temperature, reaction time and initial
pH of the feedwater, while the DM does not exhibit obvious
monotonicity with TP-hc. With increasing temperature, the pre-
cipitation of P with inorganic metals contained in SS is promoted,
leading to an increased TP-hc. Also, the increasing temperaturemay
promote free-radical mechanisms which enhance the decomposi-
tion of OP compounds into inorganic compounds [5,27]. However,
at too high temperature, a part of P in SS could be released in the
gaseous phase as phosphorus oxide [30], disfavoring TP-hc. Pro-
longed reaction time not only promotes the turning of the non-
apatite IP into the apatite P [31], but also enhances the turning of
Pyro-P into Ortho-P [27]. Thus, it favors the immobilization of P in
the hydrochar. The contribution of the initial pH is attributed to the
fact that many reactions related to P transformation, such as
8

precipitation-solubilization and sorption-adsorption, are greatly
affected by pH [27,32]. Decreasing pH may promote the dissolution
of Ca-bound P that could decrease TP-hc, while basic condition
promotes the dissolution of Al-bound P, which is subsequently
transformed into Ca-bound P that becomes increasingly insoluble
under alkaline conditions [33]. In a basic environment, even a lower
amount of Ca can be bounded with P, leading to an increase in the
apatite phosphorus [32]. The association of ortho-P with metals is
also promoted in basic conditions [34]. However, this initial pH
could be changed during the HTC reaction given the deamination of
the proteins (releasing NH3) [30,33,34], the solubilization of alka-
line salts [28], the decomposition of carbohydrates forming organic
acids [33e35], and the volatilization of acidic compounds that
occur during HTC [30]. Thus, the effect of initial pH on TP-hc would
be linked to the type of organicmatter in SS. The DMhas no obvious
monotonicity with TP-hc variation. This irregular trend could be
attributed to the chemical composition of SS. With high TP-ss and
high content of inorganic metals such as Ca and Mg (that have high
precipitation ability), TP-hc may increase with increasing DM. In-
teractions between features are presented through two-way partial
dependence plots depicted in Fig. S1 of the supporting information
S2. Overall, the results suggest that high ash and TP-ss contents,
increasing temperature, higher reaction time and higher initial pH
could promote the TP-hc.



Fig. 6. One-way partial dependence plots for TP-hc (model 5): (a) Effect of TP-ss; (b) Effect of VM; (c) Effect of Ash; (d) Effect of FC; (e) Effect of C; (f) Effect of reaction temperature;
(g) Effect of reaction time; (h) Effect of initial pH; (i) Effect of dry matter loading.
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4. Conclusion

Various configurations of predictors, including proximate anal-
ysis, elemental composition and total P of various SS, and HTC re-
action conditions, are examined for the prediction of the total P in
hydrochar using Random Forest algorithm. Although all models
show great performances for training, the performances of valida-
tion become worse when the TP-ss is not included as predictor.
When TP-ss is included as a predictor, the TP-hc is predicted with
R2 > 0.92. The model's best prediction includes both elemental and
proximate analysis data, TP-ss, and HTC reaction conditions. TP-ss is
the most influential predictor. For the HTC reaction conditions,
temperature hold the greatest positive impact, followed by the
reaction time, and initial pH of the feedwater.

The results of this work revealed the great ability of the Random
Forest algorithm in predicting the total content of P in hydrochar
from sewage sludge. However, although the model has a great
chance to always provide an accurate prediction when the feed-
stock is sewage sludge, for other kinds of biomass and wastes, the
model may not be accurate, given that the biochemical properties
of these feedstocks are different from that of sewage sludge. Hence,
in the future, the dataset will be expanded and other P-containing
wastes such as food waste and manure will be considered to
develop a global model for all these wastes and compare with in-
dividual prediction for each type of waste.
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