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An Improved Levenberg–
Marquardt Approach With
a New Reduced Form
for the Identification of
Parameters of the One-Diode
Photovoltaic Model
Building a highly accurate model for solar cells and photovoltaic (PV) modules based on
experimental data is becoming increasingly important for the simulation, evaluation,
control, and optimization of PV systems. Powerful, accurate, and more robust optimization
algorithms are needed to solve this problem. In this study, a new optimization approach
based on the Levenberg–Marquardt algorithm (ImLM) is proposed to estimate the param-
eters of PV cells and modules and simulate their electrical behavior under all environmental
conditions efficiently and accurately. To avoid the premature convergence of the Leven-
berg–Marquardt algorithm and the long computation time caused by a bad choice of
initial values, we propose a new approach. This is a new reduced form leading to a nonlin-
ear relationship of the series resistance and thus allowing to calculate the optimal initial
values of the model parameters. Comparisons with other published methods show that
the proposed approach gives not only a more accurate final solution but also a fast conver-
gence speed and a better stability. Furthermore, tests on three PV modules of different tech-
nologies (multi-crystalline, thin film, and monocrystalline) reveal that the proposed
algorithm performs well at different irradiations and temperatures. These results confirm
that the ImLM approach is a valuable tool and can be an effective and efficient alternative
for extracting PV model parameters and simulating PV module behavior under different
conditions. [DOI: 10.1115/1.4053624]

Keywords: photovoltaic models, parameter extraction, Levenberg–Marquardt algorithm,
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1 Introduction
Due to the major global energy and environmental challenges, the

development of renewable energy sources, such as solar, wind, wave,
nuclear, tidal, geothermal, biomass, and so on, has attracted a lot of
attention in developing countries and is emerging as an unavoidable
alternative for power generation [1–3]. Among these renewable
energy sources, solar seems to be the most promising. This source
is attracting a lot of interest because of its easy installation and the
important characteristics it combines, such as high scalability, lack
of direct pollution, and dependence on inexhaustible solar radiation,
available at different levels but all over the world [4,5]. Solar photo-
voltaic systems, which can directly convert solar energy into electric-
ity, have been deployed worldwide after experiencing strong growth
in recent years [6–8]. However, the energy productivity of a photo-
voltaic (PV) system is strongly influenced by several external envi-
ronmental factors, including temperature, solar radiation (solar
energy and spectrum), soiling, shading, and aging [9–11].
A PV system contains different parts centered around a solar

panel which typically has arrays of interconnected solar cells.

Building a highly accurate mathematical model to describe the non-
linear current–voltage (I–V) relationship of solar cells is a fundamen-
tally important task for the design, simulation, evaluation, analysis,
control, and optimization of PV systems [6,12–14]. Many works
have developed several models of electrical circuits with different
levels of complexity. Among these models, the two-diode model
(2DM) is known to be the most appropriate to represent the equiva-
lent electrical circuit of a P–V system [13]. However, this model is
further complicated by the fact that its execution time is long, and
its various parameters (seven in total) are nonlinear. Thus, the one-
diode model (1DM) is the most popular and widely used model
because it offers a reasonable compromise in terms of simplicity,
accuracy, and execution speed [15]. The main parameters involved
in the 1DM include the generated photocurrent, saturation current,
series resistance, shunt resistance, and ideality factor, which must
be determined based on the available information.
The parameters that characterize the electrical model can be esti-

mated from the information in the datasheet provided by the manu-
facturers [16] or from a current–voltage (I–V) curve measured
experimentally on the PV source [17,18]. Typically, the datasheet
only includes information about the short circuit, open circuit,
and maximum power points of the I–V curve verified under stan-
dard test conditions (STC). As a result, datasheet-based methods
are therefore fundamental for PV system design [15,19]. They are
typically characterized by analytical equations, which can be
solved sequentially or iteratively [15,19,20]. In contrast, methods
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based on experimental data from the PV source are essential for
studies involving the design of more efficient PV components and
the evaluation of aging effects on their performance [21]. Parameter
extraction is usually transformed into an optimization problem that
is continuous, multidimensional, constrained, highly nonlinear, and
multimodal in nature. Thus, PV parameter extraction methods are
generally grouped into three categories: analytical methods, numer-
ical methods, and hybrid methods.
Analytical methods use elementary mathematical formulations

based on approximations and simplifying assumptions to obtain
the parameters of the electrical model from a few pivot points of
the I–V and P–V curves as well as the slopes of these curves at
the intersections of the axes [22]. Their main advantages are simpli-
city, computational efficiency, and ease of implementation. In addi-
tion, only one iteration is required to obtain the desired result.
However, the quality of the solution is highly dependent on the
accuracy of the selected data points [23]. A misallocation of these
points or a small error on them can lead to large deviations on
these parameters [24,25]. These methods are only suitable for stan-
dard test conditions and break down with variations in conditions.
In Ref. [26], a Pàde approximant (PA) method is proposed to
express the exponential function of the I–V characteristic equation
of the 1DMmodel, and then, an explicit analytical description of the
current is obtained. In Ref. [27], an analytical method based on the
use of the W-Lambert function is proposed and used to extract
various parameters of PV cells. Other analytical approaches such
as Taylor series expansion [28,29], approximate explicit equation
set-based approach [30], and curve-fitting approaches [16] have
been reported in the literature.
Numerical methods consider all measured I–V data points

leading to a system of nonlinear equations. Optimization algorithms
are implemented to solve this system of equations and thus obtain
the electrical model parameters. These optimization algorithms
include deterministic methods [31–33] and metaheuristic methods
[34–36]. The main advantage of numerical methods, compared to
analytical methods, is the ability to obtain more accurate values
of the PV model parameters. However, deterministic methods
have intrinsic limitations such as the need for continuity, convexity,
and differentiability conditions, heavy computations, high sensitiv-
ity to initial values, and often lead to local optima [37–39]. In addi-
tion, the execution time is longer [40]. Some metaheuristic methods
can also easily fall into local minima. Moreover, their performance
is highly dependent on the proper setting of the control parameters.
Any wrong choice can lead to slow convergence and premature ter-
mination of the program [41].
Recently developed hybrid methods [40,42–44] are obtained by

combining different optimization algorithms or by integrating dif-
ferent types of methodologies (analytical and numerical). They
were introduced to take advantage of the efficiency of numerical
methods and the simplicity of analytical approaches and can
provide significantly better performance than the other two
methods. However, despite their performance in global search,
they require the adjustment of several parameters that significantly
affect the efficiency and accuracy of the algorithm [45]. Various
hybrid methods have been used to solve the PV parameter
problem. A cuckoo search algorithm hybridizing with
biogeography-based optimization (BHCS) was proposed in
Ref. [42] to estimate the PV model parameters. The method pro-
posed by these authors used a heterogeneous cuckoo search strategy
and a biogeography-based discovery operator to balance explora-
tion and exploitation. A hybrid floral pollination algorithm was
developed in Ref. [46] and is used to estimate the parameters of
1DM and 2DM models. The authors used the same method to
extract the parameters of three different types of photovoltaic
modules (multi-crystalline, thin film, and monocrystalline). In
Ref. [47], a new hybrid methodology that combines the diversifica-
tion and intensification mechanisms of different metaheuristics
(MH) is used to accurately estimate the PV parameters. The pro-
posed methodology can adapt to the specific optimization
problem and maintain diversity during solution construction, thus

mitigating premature convergence and population stagnation. In
Ref. [48], a novel spiral leader particle swarm optimization
(M-SLPSO) algorithm is proposed to solve the PV parameter iden-
tification problem. The proposed algorithm uses multiple swarms
with different search mechanisms: each swarm is guided by a
leader with a different spiral trajectory.
Although many different methods have been proposed to solve

the PV parameter extraction problem and several of them give
excellent results, the search for competitive algorithms based on dif-
ferent mechanisms remains an important issue. Moreover, most of
these methods, mainly iterative methods such as the Levenberg–
Marquardt (LM) algorithm, require the initial values. In general,
the user gives these initial values intuitively. Then, if the input
values are far from the real initial values, the computation time of
the algorithm will be long or, at worst, there will be a convergence
problem. Even though all the parameters of the PV model impact
the electrical behavior of a PV source in some way, a study
[49,50] showed that the I–V characteristic of a PV source is much
more sensitive to the values of the ideality factor and series resis-
tance. Special attention should be paid to the initial estimation of
ideality factor and series resistance when implementing the
derived equations. A method for obtaining these initial values
would be desirable, as the accuracy of the algorithm, its conver-
gence, and computational time can be affected by inappropriate
initial values.
In this paper, a new approach (ImLM) based on the LM algorithm

is proposed for simulating the behavior of PV cells and modules
under all environmental conditions. This method results from the
combination of the traditional LM algorithm and a new
reduced form (NRF). NRF is a method based on analytical manip-
ulation leading to a nonlinear equation between the series
resistance Rs and the ideality factor n and is used to generate the
values of the five parameters of the 1DM5P model from measured
I–V data. Then, these parameters value are used to initialize LM
algorithm.
The main contributions of this paper are summarized as follows:

• Proposal of a new hybrid ImLM approach with analytical and
deterministic principles for the identification of PV parameters
and simulate the behavior of PV cells and modules in all envi-
ronmental conditions.

• The ImLM approach is expected to help improve the accuracy
of the LM algorithm and save valuable computation time.

• The performance of ImLM has been extensively studied by
applying it to different problems, and the results have shown
high accuracy, reliability, and robustness.

The rest of this paper is structured as follows: Sec. 2 describes the
mathematical model of the solar cell/P–Vmodule parameter estima-
tion problem; Sec. 3 presents the proposed hybrid algorithm in
detail, followed by the experiments, discussions, and comparisons
with other published technologies in Sec. 4. Finally, Sec. 5 con-
cludes this paper.

2 Photovoltaic Generator Modeling
In the literature, there exist several PV models that have been

introduced to describe the I–V characteristics of the solar cells
and PV modules. However, given the high agreement between sim-
plicity, accuracy, and computational speed, the one-diode, five-
parameter model is by far the most popular [15,51]. In this
section, this model and the PV module are briefly described.

2.1 Photovoltaic Cell Modeling. The structure of the single-
diode model is described as Fig. 1.
In this model, by applying Kirchhoff’s law, the output current of

the PV cell can be formulated as follows [52]:

I = I ph − Id − Ip (1)
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where I is the cell output current, Iph is the photogenerated current,
Id is the diode current, and Ip is the shunt resistor current.
According to the Shockley equation, Id can be calculated as

Id = I0 exp
V + RsI

nVt

( )
− 1

[ ]
(2)

where I0 is the reverse saturation current of the diode, V is the cell
output voltage, n is the diode ideality factor, Rs is the series resis-
tance, and Vt is the thermal voltage given by expression (3)

Vt =
kT

q
(3)

where k is the Boltzmann constant (1.3806503 · 10−23 J/K), q is the
charge of the elementals (1.60217646 · 10−19 C), and T is the tem-
perature of the cell (K).
The shunt current Ip is formulated as follows:

Ip =
V + RsI

Rp
(4)

where Rp is the shunt resistance.
Substituting Eqs. (2) and (4) for Eq. (1), the current–voltage rela-

tionship of the one-diode model can be expressed as follows:

I = I ph − I0 exp
V + RsI

nVt

( )
− 1

[ ]
−
V + RsI

Rp
(5)

This model contains a total of five unknown parameters to be esti-
mated (Iph, I0, Rs, Rp, and n).

2.2 Photovoltaic Module Model. Photovoltaic modules, for
the most part, are generally composed of multiple solar cells con-
nected in series and/or parallel. The equivalent circuit model of
the PV module is shown in Fig. 2.
The current–voltage relationship can be expressed by Eq. (6)

[53–55]

I = NpI ph − NpI0 exp
V + Rs

Ns

Np

( )
I

NsnVt

⎛
⎜⎜⎝

⎞
⎟⎟⎠ − 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦ −

V + Rs
Ns

Np

( )
I

Rp
Ns

Np

( )
(6)

where Np is the number of solar cells in parallel, and Ns is
the number of solar cells in series. For the PV module, five

unknown parameters also need to be extracted, namely Iph, I0, Rs,
Rp, and n.

3 Methodology Overview
3.1 Problem Formulation. For the PV model parameters

extraction problem, the main objective is to extract a set of param-
eters that minimize the error between the measured and simulated
currents using a performance indicator as an objective function.
The performance indicator commonly used in the literature to
solve this problem, and which is adopted in this study is the
root-mean-square error (RMSE).
For this purpose, to overcome the constraints related to the output

current equation, the ImLM approach was used to calculate the
simulated current Ith(Vi, p) from the p-parameters of 1DM5P with
p= [Iph, I0, n, Rs, Rp]. The current values were determined by
solving the equation Ith(Vi, p)= Lp(Vi). For each value Vi of the
measured voltage, Lp(Vi) is given by

Lp(Vi)

= I ph − I0 exp
Vi + RsIth(Vi, p)

nVt

( )
− 1

[ ]
−
Vi + RsIth(Vi, p)

Rp

( )
(7)

Then, a vector of residuals or absolute error vector r(p) is
obtained from the theoretical current Ith and the measured current
I as shown by expression (8)

r(p) =

Ith(V1, p) − I(V1)
Ith(V2, p) − I(V2)

.

.

.

Ith(Vm, p) − I(Vm)

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

(8)

The norm f (p) of the vector r(p) of residuals and the RMSE are
determined from the relations (9) and (10), respectively

f (p) =
1
2

∑m
i=1

[ri(p)]
2 (9)

RMSE(p) =

����������������������������
1
N

∑N
i=1

[I(Vi) − Ith(Vi, p)]2

√√√√ =

�������
2
N
f (p)

√
(10)

Finally, then, the parameter estimation problem is to find the
optimal parameter vector p that minimizes the RMSE and is
expressed as follows:

Min RMSE(p) =Min

����������������������������
1
m

∑m
i=1

[I(Vi) − Ith(Vi, p)]2
√

=Min

�������
2
m
f (p)

√

(11)

where m is the number of empirical points (Ii, Vi) measured with
i∈ℕ.
Obviously, a smaller objective function value corresponds to

better-estimated parameters. Because of the objective function is
nonlinear and transcendental, this problem is difficult to solve.

3.2 Levenberg–Marquardt Method. LM method belongs to
this range of nonlinear least-squares optimization algorithms. It is
particularly robust and efficient in local (possibly global) search
and has become a benchmark algorithm for minimizing continuous
twice derivable functions [56]. The LM method has the advantage
of combining the behaviors of two gradient-based methods ofFig. 2 Equivalent circuit of PV module model

Fig. 1 Equivalent circuit of single-diode model
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different orders and complementary characteristics: the gradient
descent method and the Gauss–Newton method [57].
The optimal parameters are obtained after several iterations. For

each iteration k, the norm f(p) of the residual vector r(p) and the Jaco-
bian J(p) of r(p) are calculated using the following expressions (12):

J(p) =
∂r(p)
∂p

[ ]
(12)

The gradient ∇f and the Hessian H of f(p) can be estimated by the
following expressions (13) and (14), respectively

Δf = JTr(p) (13)

H = JTJ(p) (14)

Knowing the vector pk of the parameters at iteration k, the vector
pk+1 of the parameters at iteration (k+ 1) is obtained using expres-
sion (15)

pk+1 = pk − [Hk + λdiag(Hk)]
−1∇f ( pk) (15)

where the positive damping factor λ represents a Lagrange multi-
plier and is adjusted at each new iteration. It is used to control the
speed of convergence. Moreover, the parameter λ varies in the
same direction as the error to adjust the influence of the Hessian
H(p), on the convergence of the solution. The strategy for regulating
the damping factor λ of the Levenberg–Marquardt algorithm is
based on the following principle:
If f (pk+1) > f (pk) then λ = λ/10. Otherwise, λ = 10λ and pk+1=pk.
The Levenberg–Marquardt algorithm is particularly robust, in the

sense that it converges with far fewer iterations and is the bench-
mark optimization algorithm for many software programs in scien-
tific computing. This robustness is also related to the fact that the
term [H+ λ · diag(H )] is systematically positive. However, the con-
vergence of the algorithm (LM) to the approximate solution is very
dependent on the choice of the initial value of the parameters to be
optimized. Poor initial values can sometimes lead to premature
divergence or convergence of the LM algorithm [32,48]. To over-
come this drawback, an analytical technique called new reduced
form and based on Brent’s algorithm is used to compute the Pinitial

parameters Pinitial (Iphin, I0in, nin, Rsin, and Rpin) that will be used to
initialize the iterative LM algorithm.

3.3 New Reduced Form. NRF is an analytical technique per-
formed in a few computational steps that estimates the five physical
parameters of PV modules from their experimental current–voltage
characteristics using the diode equivalent circuit model. It requires
only limited information from the experimental I–V curve, namely
the open circuit voltage (Voc), the short-circuit current (Isc), and the
voltage (Vmp) and current (Imp) at the maximum power point
(MPP).
3.3.1 The Basic Equations. NRF is based on a few equations

obtained using the properties of the short circuit, maximum
power, and open circuit points leading to the first three equations
below

(1) At the open circuit point (V=Voc, I= 0), we derive

0 = NpI ph − NpI0 exp
Voc

NsnVt

( )
− 1

[ ]
−

Np

Ns

( )
Voc

Rp
(16)

(2) At the point of short circuit (V= 0, I= Isc), Isc is calculated
by

Isc = NpI ph − NparI0 exp
RsIsc
NpnVt

( )
− 1

[ ]
−
RsIsc
Rp

(17)

(3) At the point of maximum power (V=Vmp, I= Imp); there-
fore, P=Pmax

Imp = NpI ph − NpI0 exp
1
nVt

Vmp

Ns
+ Rs

Imp
Np

( )( )
− 1

[ ]

−
Np

Rp

Vmp

Ns
+ Rs

Imp
Np

( )
(18)

One of the properties of the photovoltaic cell is that its total inter-
nal resistance RT corresponds to the resistance RL of the external
load when the system is operating at its maximum power [58]

P = Pmax ⇒ RT = RL =
Vmp

Ns

Np

Imp
(19)

Thus, whatever the temperature and irradiation conditions, at
the point of maximum power and when the load resistance is
exactly matched to the total internal resistance of the cell, we can
write

RT = Rs +
RDRp

RD + Rp
=
Vmp

Ns

Np

Imp
(20)

This expression (20) can be put in the form

1
RD

=

Imp
Np

+
Rs

Rp

Imp
Np

−
Vmp

NsRp

Vmp

Ns
− Rs

Imp
Np

(21)

RD is the dynamic resistance of the p–n junction or differential
resistance of the diode when the cell is operating at its maximum
power and is determined as follows:

RD =
dVD

dID

∣∣∣∣
P=Pm

=
nVt

Ioexp
1
nVt

Vmp

Ns
+ Rs

Imp
Np

( )( ) (22)

3.3.2 Cost Function Expression. By rearranging Eq. (17), we
obtain the following expression:

(Rs + Rp)Isc = NpRp(I ph + Is) 1 −
Is

(I ph + Is)
exp

RsIsc
NpnVT

( )( )
(23)

Which can be put in the form

I0exp
RsIsc
NpnVT

( )
= (I ph + Is) −

(Rs + Rp)
NpRp

Isc (24)

One intrinsic property of most photovoltaic cells is that the value

of exp
RsIsc
NpnVT

( )
≈ 0. Thus, Eq. (23) can be reduced to

Isc ≈
NpRp

(Rs + Rp)
(I ph + Is) (25)

By differentiating Eq. (6), we can obtain the following Eq. (26):

dV

dI
= −

Ns

Np

( ) 1 + Rs
I0
nVt

exp
1
nVt

V

Ns
+ Rs

I

Np

( )( )
+

1
Rp

[ ]
I0
nVt

exp
1
nVt

V

Ns
+ Rs

I

Np

( )( )
+

1
Rp

(26)

At the short-circuit point, Eq. (25) becomes

dV

dI

∣∣∣∣ V = 0
I = Isc

=−
Ns

Np

( ) 1 + Rs
I0
nVt

exp
RsIsc
NpnVt

( )
+

1
Rp

[ ]
I0
nVt

exp
RsIsc
NpnVt

( )
+

1
Rp

(27)
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Substituting Eqs. (24) into (27) yields

dV

dI

∣∣∣∣ V = 0
I = Isc

=
Ns

Np

( )
(Rs + Rp)(RsIsc − NpnVt) − NpRsRp(I ph + I0)

NpRp(I ph + I0) − (Rs + Rp)Isc + NpnVt

(28)

Combining Eqs. (27) and (28), we obtain

dV

dI

∣∣∣∣ V = 0
I = Isc

≅
Ns

Np

( )
(Rs + Rp) (29)

Finally, the cost function ϕ defined as the difference between the
expression in Eq. (28) and that in Eq. (29) can be written as follows:

ϕ =
Ns

Np

( )[
(RsIsc − NpnVT )(Rs + Rp) − NpRsRp(I ph + Is)

NpRp(I ph + Is) − (Rs + Rp)Isc + NpnVT

−(Rs + Rp)

]
≈ 0 (30)

3.3.3 Parameter Reduction. To solve Eqs. (16)–(18) and the
relation in Eq. (6) which contains five parameters, it is possible to
manipulate them to get rid of some parameters so that the solution
can be found easily. Because n and Rs are on the exponents, which
are difficult to eliminate, only Iph, I0, and Rp will be eliminated.
Thus, combining Eqs. (16)–(18) allows us to estimate Iph, I0, and
Rp, which are given by the following expressions, respectively:

I ph = 1 +
Rs

Rp

( )
Isc
Np

+
Isc +

RsIsc
Rp

−
Np

Ns

Voc

Rp

( )
exp

RsIsc
NpnVt

( )
− 1

[ ]

Np exp
Voc

NsnVt

( )
− exp

RsIsc
NpnVt

( )[ ] (31)

I0 =
Isc +

RsIsc
Rp

−
Np

Ns

Voc

Rp

Np exp
Voc

NsnVt

( )
− exp

RsIsc
NpnVt

( )[ ] (32)

Rp =
NsXRsIsc − NpXVoc − NsRsIsc + NsRsImp + NpVmp

Ns(Isc − Imp − XIsc)
(33)

with

X =
exp

1
nVt

Vmp

Ns
+ Rs

Imp
Np

( )( )
− exp

RsIsc
NpnVt

( )

exp
Voc

NsnVt

( )
− exp

RsIsc
NpnVt

( ) (34)

Combining Eqs. (21) and (22), we obtain

Ioexp
1
nVt

Vmp

Ns
+ Rs

Imp
Np

( )( )
=
nVt

Imp
Np

+
Rs

Rp

Imp
Np

−
Vmp

NsRp

( )
Vmp

Ns
− Rs

Imp
Np

(35)

Let

Ioexp
1
nVt

Vmp

Ns
+ Rs

Imp
Np

( )( )

=
nVt(NsRsImp + NsRpImp − NpVmp)

Rp(NpVmp − NsRsImp)
(36)

Furthermore, subtracting Eq. (17) from Eq. (18) and neglecting

exp
RsIsc
NpnVt

( )
, we obtain

Ioexp
1
nVt

Vmp

Ns
+ Rs

Imp
Np

( )( )
= 1 +

Rs

Rp

( )
Isc
Np

−
Imp
Np

( )
−

Vmp

NsRp

(37)

A second explicit form of Rp is obtained from Eqs. (36) and (37)
and is given by

Rp =
N2
pV

2
mp + N2

s R
2
s Imp(Isc − Imp) + NsNpRs(NsnVtImp − IscVmp) − NsN2

pnVtVmp

N2
s RsImp(Isc − Imp) + NsNpVmp(Isc − Imp) − N2

s NpnVtImp
(38)

With Eqs. (33) and (38), Rp can obviously be eliminated and this allows us to establish an autonomous implicit relation for the series
resistance Rs represented by

Rs =
NpVocVmp(Isc − Imp) + NsN2

pnVt(IscVmp − ImpVoc) − NpIscV2
mp +

NsN2
pnVtVmp(2Imp − Isc)

X
NsNp(IscImp(Voc − Vmp) − I2mpVoc)

(39)

The expression (39) is an equation with two unknowns n and Rs.

3.3.4 Reduced New Form Procedure. The NRF algorithm is a
loop of search processes. Each loop is mainly composed of three
steps and a procedure to find n for the next loop, as shown in Fig. 3.
The search starts with n= + 1.0; it ends when the ten-thousandth

digit of n is found. Since some solar cells display a relatively high n,
its value is generated in the selected range of 1–7. This choice
ensured accurate extraction of n for almost all types of solar cells
and modules [58,59]. First, the P–V parameters (Vm, Im, Voc,
and Isc) were calculated from the provided I–V data using polyno-
mial, exponential, and Gaussian curve fits around the points

where Pm, Isc, and Voc are located, respectively. Then, take n=
1.0 (the smallest plausible value) and step h= + 0.1; Rs becomes
the only variable in (40) that can be written as φ(Rs)= 0. Because
of its complex form, solving φ(Rs)= 0 analytically is almost impos-
sible. Therefore, MATLAB’s “fzero” solver is used to solve φ(Rs)= 0
and obtain the value of the series resistance Rs. The “fzero” function
is based on Brent’s algorithm. This algorithm combines the bisec-
tion method, the inverse quadratic interpolation method, and the
secant method. It is used to determine the zero of a one-dimensional
continuous function around a given initial value. The values of Rp,
I0, and Iph are then evaluated using Eqs. (34), (33), and (32), respec-
tively. The cost ϕ is also evaluated using (31) with the obtained
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parameters. If ϕ passes through zero (or changes sign), then the
actual value of n is between the current and previous values.
Then change the direction of the scan and divide h by 10 and
then move to the next value of n. Otherwise, change the value of
n with the same value of h. Continue scanning until the step h is
considerably small (10−5) .

3.4 Statistical Errors. In order to evaluate the goodness of fit
of the model, the predicted I–V and P–V curves are compared to
their experimental counterparts. Based on this comparison,
several common performance indicators namely individual absolute
errors (IAEC) and (IAEP) on current and power respectively, indi-
vidual bias errors (IBEC) and (IBEP) on current and power respec-
tively, relative error (RE) and RMSE are calculated

IBEC = I(Vi) − Ith(Vi, p) (40)

IAEC = |I(Vi) − Ith(Vi, p)| (41)

IBEP = P(Vi) − Pth(Vi, p) (42)

IAEP = |P(Vi) − Pth(Vi, p)| (43)

RE =
I(Vi) − Ith(Vi, p)

I(Vi)

∣∣∣∣
∣∣∣∣ (44)

RMSE =

����������������������������
1
N

∑N
i=1

I(Vi) − Ith(Vi, p)[ ]2
√√√√ (45)

IAEC, IAEP, IBEC, and IBEP are indications of the uncertainty
of the estimate. They measure the extent to which the estimated data
may differ from their experimental values. The RMSE and RE will
provide an appreciation of the overall appearance and point accu-
racy of the theoretical I–V curves.

3.5 Updating of Electrical Parameters. The parameters of a
PV model vary with irradiance and temperature. The expressions
(46)–(51) allow us to obtain the new values of the parameters in
the real conditions (G, T ), from those in the STC conditions
(GSTC, TSTC)

I ph(G, T) = I phSTC 1 + αIsc (T − TSTC)
[ ] G

GSTC

( )
(46)

I0(G, T) = I0STC
T

TSTC

( )3

exp
1
k

EgSTC

TSTC
−
Eg(T)
T

( )[ ]
(47)

Eg(T)
EgSTC

= 1 − 2, 677 · 10−4(T − TSTC) (48)

Fig. 3 Searching algorithm of the NRF method
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Rs(G, T)
RsSTC

=
T

TSTC

( )
1 − 0.217ln

G

GSTC

( )[ ]
(49)

Rsh(G, T)
RpSTC

=
GSTC

G
(50)

n = nSTC
T

TSTC

( )
(51)

where EgSTC represents the gap of the semiconductor material under
STC conditions and αIsc the temperature coefficient for the short-
circuit current.

3.6 Procedure for Identifying Photovoltaic Parameters
With the ImLM Method. The process of identifying the PV
parameters, including initializing the parameters’ values through
NRF and then optimizing their values through the combined
approach of LM and NRF (ImLM), is presented step by step in
Fig. 4.
The principle consists in generating the values of Vmp, Imp, Voc,

and Isc from the measured or digitized I–V data which will be
used as starting values for the program. Then, the LM algorithm
is used to estimate the model parameters. Note that LM requires
initial values of the parameters more or less close to the optimal
solution. These are estimated by the NRF method. Indeed, an incor-
rect initial value or far from the optimal solution can affect the accu-
racy of the algorithm, its convergence and its convergence speed as
reported by Refs. [60,61]. The proposed approach (ImLM) is
expected to help improve the accuracy of the LM method and
save valuable computation time. The obtained optimal parameter
values are used to generate simulated I–V data for each device
type. The RMSE is then calculated and compared to those obtained
by other recent methods reported in the literature.

4 Results and Discussions
To validate the performance of ImLM in solving the 1DM5P

model parameter extraction problem, ImLM is applied on five PV
devices with various characteristics. The details of these character-
istics are presented in Table 1.
The proposed ImLM method is compared to several well-known

methods used for the estimation of the five 1DM model parameters,
including parameters identification of PV model using Improved
slime mould optimizer and Lambert W-function (ImSMA) [64],
classified perturbation mutation-based particle swarm optimization
algorithm (CPMPSO) [43], an enhanced adaptive differential evolu-
tion algorithm for parameter extraction of photovoltaic models
(EJADE) [65], a performance-guided JAYA algorithm for parame-
ters identification of photovoltaic cell and module (PGJAYA) [66],

Fig. 4 Methodology adopted for parameters extraction of
single-diode model

Table 1 Details of the characteristics of the PV devices used

PV Devices Type Technology References Data sources Ns Np G (W/m2) T (°C)

RTC France Cell Monocrystalline [13,31] Published in the reference 1 1 1000 33
PVM 752 GaAs Cell GaAs thin film [13,58] Published in the reference 1 1 1000 25
Photowatt-PWP201 Module Polycrystalline [31] Published in the reference 36 1 1000 45
STM6-40/36 Module Monocrystalline [13,59] Published in the reference 36 1 1000 51
STP6-120/36 Module Polycrystalline [13,41,62,63] Published in the reference 36 1 1000 55

Table 2 Comparison of the parameters extracted from the RTC France solar cell

Method Iph (A) Io (μA) Rs (Ω) Rp (Ω) n RMSE

ImLM (proposed) 0.7608 0.3107 0.0366 52.8900 1.5177 7.7301× 10−4

ImSMA 0.7608 0.3223 0.0364 53.8989 1.5215 7.7518× 10−4

FFO 0.7609 0.3166 0.0365 53.2724 1.4791 7.9310× 10−4

PGJAYA 0.7608 0.3230 0.0364 53.7185 1.4812 9.8602× 10−4

MLBSA 0.7608 0.3230 0.0364 53.7185 1.4812 9.8602× 10−4

SATLBO 0.7608 0.3232 0.0364 53.7256 1.4812 9.8602× 10−4

TLABC 0.7608 0.0323 0.0364 53.7164 1.4812 9.8602× 10−4

ITLBO 0.7608 0.3230 0.0364 53.7185 1.4812 9.8602× 10−4

EJADE 0.7608 0.3230 0.0364 53.7185 1.4812 9.8602× 10−4

ISCE 0.7608 0.3230 0.0364 53.7185 1.4812 9.8602× 10−4

EHA-NMS 0.7608 0.3230 0.0364 53.7185 1.4812 9.8602× 10−4

Rcr-IJADE 0.7608 0.3230 0.0364 53.7185 1.4812 9.8602× 10−4

ELBA 0.7608 0.3230 0.0364 53.7185 1.4812 9.8602× 10−4

CPMPSO 0.7608 0.3230 0.0364 53.7185 1.4812 9.8602× 10−4

JADE 0.7608 0.3229 0.0364 53.6477 1.4811 9.8606× 10−4

GOTLBO 0.7608 0.3316 0.0363 54.1154 1.4838 9.8744× 10−4

IJAYA 0.7608 0.3228 0.0364 53.7595 1.4811 9.8603× 10−3
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improved teaching-learning-based optimization (ITLBO) [62],
Multiple learning backtracking search algorithm for estimating
parameters of photovoltaic models (MLBSA) [67], parameter
extraction of solar cell models using improved shuffled complex
evolution algorithm (ISCE) [41], Teaching-learning-based artificial
bee colony for solar photovoltaic parameter estimation (TLABC)
[68], parameters identification of photovoltaic models using an
improved JAYA optimization algorithm (IJAYA) [69], parameters
identification of photovoltaic models using self-adaptive
teaching-learning-based optimization (SATLBO) [69], parameters
identification of solar cell models using generalized oppositional
teaching-learning-based optimization (GOTLBO) [70], parameters
identification of photovoltaic models using hybrid adaptive Nelder-
Mead simplex algorithm based on eagle strategy (EHA-NMS) [71],
parameter extraction of solar cell models using repaired adaptive
differential evolution (Rcr-IJADE) [72], adaptive differential evolu-
tion with optional external archive (JADE) [73], parameter extrac-
tion of photovoltaic models using an enhanced Lévy flight bat
algorithm (ELBA) [15], Directional Bat Algorithm (DBA) [74],
New directional bat algorithm for continuous optimization prob-
lems (NBA) [75], Simple and efficient estimation of photovoltaic
cells and modules parameters using approximation and correction
technique (ACT) [76], Bat algorithm: a novel approach for global
engineering optimization (BA) [77], Artificial bee colony (ABC)
[55], Backtracking search algorithm (BSA) [78], parameter

extraction of photovoltaic models using an enhanced Lévy flight
bat algorithm (ELPSO) [13], electrical characterization of photovol-
taic modules using farmland fertility optimizer (FFO) [79], and
extracting solar cell model parameters based on chaos particle
swarm algorithm (CPSO) [58].
The statistical quantities used for comparison are RMSE and RE.

Recall that the smaller the value of RMSE, the more accurate the
extracted parameters will be.

4.1 Validation on Photovoltaic Cells. Two photovoltaic cells
of different technologies are used in this section to examine the per-
formance and accuracy of the ImLM method. These are the 57 mm
diameter commercial silicon solar cell from RTC France and the
GaAs thin-film cell, PVM 752. Details of the characteristics of
these two PV cells are shown in Table 1.
For the commercial RTC France PV cell, ImLMwas compared to

several methods with respect to RMSE values. The extracted
parameters and corresponding RMSE values for each method are
shown in Table 2, where the best RMSE values have been high-
lighted in bold type.
In Table 2, it can be observed that ImLM recorded the best

RMSE value (7.7301 × 10−4). ImSMA provided the second best
result (7.7518 × 10−4), FFO the third best result (7.9310 × 10−4) fol-
lowed by EJADE, PGJAYA, ITLBO, MLBSA, ISCE, TLABC,

Fig. 5 Comparisons between the measured data and the curves simulated by ImLM for the RTC France silicon cell

Fig. 6 Individual errors between measured and ImLM estimated data for the RTC France silicon cell
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SATLBO, EHA-NMS, Rcr-IJADE, ELBA, and CPMPSO, which
show an identical result (9.8602 × 10−4). The worst result (9.8603
× 10−4) is obtained by IJAYA. Although the second best RMSE
value is close to the best RMSE value, it is significant for any reduc-
tion in the objective function. Since the precise parameter values
were not available, the smaller the objective function value, the
more precise the extracted parameters.
Furthermore, based on the parameters extracted by ImLM, the

I–V and P–V curves are shown in Fig. 5. It is clear that the data
simulated by ImLM and those measured are highly consistent for
the I–V and P–V curves. In addition, IAEC and IAEP as well as
IBEC and IBEP, between the simulated and measured data, are pre-
sented in Table 9 in the Appendix.
We can infer from Table 9, Figs. 6 and 7 that all the IAEC values

do not exceed 1.66 × 10−3 and all the IAEP values are less than 7.97
× 10−3. Furthermore, all RE values are in the range (−1.11 × 10−2;
7.19 × 10−2). Thus, these values are relatively small, which demon-
strates the accuracy of the extracted parameters. The actual behavior

of the RTC France P–V cell can therefore be accurately described
by the one-diode model.
Following the same procedure as before, the ImLM method was

evaluated on the PVM 752 GaAs thin-film cell. After determining
the model parameters, the simulated currents were calculated, and
the different performance indicators were evaluated. The results
obtained by ImLM for this module are compared with those of
ten methods as shown in Table 3, in which the best results have
been marked in bold.
It is worth mentioning that ImLM outperformed all the stochastic

and deterministic optimization methods used for comparison,
namely, ELBA, DBA, NBA, BSA, BA, ACT, ELPSO, ABC, and
CPSO. Table 4 clearly shows that the best RMSE value is obtained
by ImLM (2.0903 × 10−4), which is slightly better than those
obtained by ELBA (2.2780 × 10−4) and DBA (2.2931 × 10−4).
The poor value of RMSE (2.5400 × 10−2) is obtained by ELPSO
and CPSO. It should be noted that although the differences
between the three best RMSE values are very small, they are signif-
icant for any reduction in the objective function.
In addition, based on the parameters extracted by ImLM, the I–V,

P–V, IAEC, IAEP, IBEC, and IBEP curves are presented in Figs. 8
and 9.
An excellent fit and very good agreement between the simulated

and measured data can be observed over the entire voltage range.
All IAEC and IAEP values are less than or below 3.2 × 10−3 A
and 3.21 × 10−3 W, respectively. In addition, the values of IBEC
and IBEP are in the range (−2.47 × 10−3 A, 3.19 × 10−3 A) and
(−2.26 × 10−3 W, 3.21 × 10−3 W), respectively.
In addition, Fig. 10 shows all RE values fall in the range (−8.99 ×

10−3, 6.55 × 10−3) for both current and power. Thus, these values
are relatively small, which demonstrates the accuracy of the param-
eters extracted by the ImLM approach.

4.2 Validation on Photovoltaic Modules. In this section, the
proposed ImLMmethod was tested on three different P–Vmodules,

Fig. 7 Relative error between simulated and measured data for
the RTC France solar cell

Table 3 Comparison of the parameters extracted from the PVM 752 GaAs thin-film solar cell

Method Iph (A) Io (μA) Rs (Ω) Rp (Ω) n RMSE

ImLM (proposed) 0.1000 19.4224 0.6165 684 1.7341 2.0903× 10−4

ELBA 0.1001 0.0000 0.6605 608.01 1.6157 2.2780× 10−4

DBA 0.1000 0.0000 0.6582 661.31 1.6241 2.2931× 10−4

NBA 0.1000 0.0000 0.5957 1000.00 1.8010 3.9469× 10−4

ACT 0.1000 19.4231 0.6166 684.52 1.7341 7.7894× 10−4

ABC 0.1033 32.0000 0.5000 100.00 1.7742 2.0412× 10−3

BSA 0.1039 84.9000 0.5000 100.00 1.8586 2.1469× 10−3

BA 0.0911 38.3591 0.2179 789.91 1.7996 8.6007× 10−3

ELPSO 0.1150 0.0000 0.1591 14.43 1.7686 2.5400× 10−2

CPSO 0.1165 0.0000 0.3466 14.24 1.6171 2.5400× 10−2

Table 4 Comparison of the extracted optimal parameters of the Photowatt-PWP201 module

Method Iph (A) Io (μA) Rs (Ω) Rp (Ω) n RMSE

ImLM (proposed) 1.0324 2.5027 0.0345 20.8127 1.3169 2.0400× 10−3

CPMPSO 1.0305 3.4823 1.2013 27.2773 1.3512 2.4251× 10−3

ISCE 1.0305 3.4823 0.0334 27.2773 1.3512 2.4251× 10−3

EHA-NMS 1.0305 3.4823 0.0334 27.2773 1.3512 2.4251× 10−3

Rcr-IJADE 1.0305 3.4823 0.0334 27.2773 1.3512 2.4251× 10−3

IJAYA 1.0305 3.4703 0.0334 27.1493 1.3508 2.4251× 10−3

PGJAYA 1.0305 3.4818 0.0334 27.2737 1.3512 2.4251× 10−3

MLBSA 1.0305 3.4823 0.0334 27.2773 1.3512 2.4251× 10−3

SATLBO 1.0305 3.4827 0.0334 27.2890 1.3512 2.4251× 10−3

GOTLBO 1.0305 3.4991 0.0334 27.4914 1.3517 2.4251× 10−3

TLABC 1.0306 3.4715 0.0334 27.0260 1.3509 2.4251× 10−3

ITLBO 1.0305 3.4823 0.0334 27.2773 1.3512 2.4251× 10−3

JADE 1.0305 3.4831 0.0334 27.2868 1.3512 2.4251× 10−3

EJADE 1.0305 3.4823 0.0334 27.2773 1.3512 2.4251× 10−3
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including Photowatt-PWP-201 module, STM6-40/36 module, and
STP6-120/36 module. The RMSE value obtained by ImLM on
each tested module was compared with those obtained by
CPMPSO, EJADE, PGJAYA, ITLBO, ISCE, MLBSA, TLABC,
IJAYA, SATLBO, EHA-NMS, GOTLBO, Rcr-IJADE, and
JADE methods. The extracted parameters and RMSE obtained by
each of the tested methods are presented in Tables 4–6.
For these three P–V modules, the proposed ImLM method

obtained the lowest RMSE values. Therefore, ImLM can extract
the single-diode model parameters more efficiently and accurately
than the methods used in the study.
As for the photovoltaic cells, the optimal parameters obtained by

the ImLM method for each of the three modules are used to plot the
I–V and P–V curves. The IAEC, IAEP, IBEC, and IBEP errors were
also calculated to indicate the deviation between the simulated data
and the experimental data. The results of the calculations are pre-
sented in Tables 11–13 in the Appendix. In the same context, the
results are plotted and presented in Figs. 11–16.
Analysis of these figures indicates excellent agreement and

good correlation between the experimental and estimated data for
each of the three modules tested. Furthermore, for each of the
Photowatt-PWP-201, STM6-40/36, and STP6-120/36 modules,
the evolution of RE values as a function of voltage is shown in
Figs. 17–19, respectively.

All the RE values, both for current and for power, are in the range
(−1.75 × 10−2, 1.88 × 10−2) for each of the three modules. Thus,
these values are relatively small, demonstrating the accuracy of
the extracted parameters.

4.3 Simulation of the Electrical Behavior of Modules Under
Different Environmental Conditions.. To further investigate its

Fig. 8 Comparisons between the measured data and the curves simulated by ImLM for PVM 752 GaAs thin-film
cell

Fig. 9 Individual errors between measured and ImLM estimated data for PVM 752 GaAs thin-film cell

Fig. 10 Relative error between simulated andmeasured data for
the PVM 752 GaAs thin-film solar cell
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practicability, the proposed method is used in this section to simu-
late the behavior of three PV modules of different technologies
under all environmental conditions. These are SM55 (monocrys-
talline), KC200GT (multi-crystalline), and ST40 (thin film). For
this purpose, the proposed approach is first used to extract the
parameters (IphSTC, I0STC, RsSTC, RpSTC, and nSTC) of the single-
diode model for each of the three PV modules under the reference
conditions (STC) using the I–V characteristics provided by the

manufacturers. Then, using Eqs. (46)–(51), the values of the
parameters (Iph, I0, Rs, Rp, n) under operational conditions (G,
T) are derived and are used to simulate the I–V and P–V
curves of the different modules tested. These I–V and P–V
curves are compared to those published by the module manufac-
turers. The experimental data used for the comparison are
obtained by digitizing the I–V curves given in the manufacturers’
data sheets.

Table 5 Comparison of the extracted optimal parameters of the STM6-40/36 module

Method Iph (A) Io (μA) Rs (Ω) Rp [Ω] n RMSE

ImLM (proposed) 1.6639 1.7412 0.0043 15.9313 1.5205 1.7219× 10−3

EJADE 1.6639 1.7387 0.0043 15.9283 1.5203 1.7298× 10−3

GOTLBO 1.6639 1.7387 0.0043 15.9283 1.5203 1.7298× 10−3

ITLBO 1.6639 1.7387 0.0043 15.9283 1.5203 1.7298× 10−3

MLBSA 1.6639 1.7387 0.0043 15.9283 1.5203 1.7298× 10−3

PGJAYA 1.6639 1.7389 0.0043 15.9290 1.5203 1.7298× 10−3

SATLBO 1.6639 1.7387 0.0043 15.9283 1.5203 1.7298× 10−3

TLABC 1.6639 1.7387 0.0043 15.9283 1.5203 1.7298× 10−3

EHA-NMS 1.6639 1.7387 0.0043 15.9283 1.5203 1.7298× 10−3

ISCE 1.6639 1.7387 0.0043 15.9283 1.5203 1.7298× 10−3

Rcr-IJADE 1.6639 1.7387 0.0043 15.9283 1.5203 1.7298× 10−3

CPMPSO 1.6639 1.7387 0.0043 15.9283 1.5203 1.7298× 10−3

JADE 1.6638 1.7946 0.0042 16.0190 1.5238 1.7324× 10−3

IJAYA 1.6637 1.8353 0.0040 15.9449 1.5263 1.7548× 10−3

Table 6 Comparison of the extracted optimal parameters of the STP6-120/36 module

Method Iph (A) Io (μA) Rs (Ω) Rp (Ω) n RMSE

ImLM(proposed) 7.4752 1.9369 0.0047 15.9361 1.2447 1.4251× 10−2

CPMPSO 7.4725 2.3350 0.0046 22.2199 1.2601 1.6601× 10−2

ISCE 7.4725 2.3350 0.0046 22.2200 1.2601 1.6601× 10−2

EHA-NMS 7.4725 2.3350 0.0046 22.2200 1.2601 1.6601× 10−2

Rcr-IJADE 7.4725 2.3350 0.0046 22.2200 1.2601 1.6601× 10−2

PGJAYA 7.4725 0.0000 0.0046 22.2200 1.2601 1.6601× 10−2

MLBSA 7.4725 2.3350 0.0046 22.2200 1.2601 1.6601× 10−2

SATLBO 7.4725 2.3350 0.0046 22.2200 1.2601 1.6601× 10−2

GOTLBO 7.4725 2.3350 0.0046 22.2200 1.2601 1.6601× 10−2

TLABC 7.4725 2.3349 0.0046 22.2100 1.2601 1.6601× 10−2

ITLBO 7.4725 2.3350 0.0046 22.2200 1.2601 1.6601× 10−2

EJADE 7.4725 2.3350 0.0046 22.2200 1.2601 1.6601× 10−2

IJAYA 7.4672 2.2536 0.0046 27.5900 1.2571 1.6731× 10−2

JADE 7.4645 3.4139 0.0044 1439.70 1.2926 1.7430× 10−2

Fig. 11 Comparisons between the measured data and the curves simulated by ImLM for the photowatt-PWP201
polycrystalline silicon module
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Fig. 12 Individual errors between measured and ImLM estimated data for the photowatt-PWP201 polycrystalline
silicon module

Fig. 13 Comparisons between the measured data and the curves simulated by ImLM for the STM6-40/36
monocrystalline silicon module

Fig. 14 Individual errors betweenmeasured and ImLM estimated data for the STM6-40/36 monocrystalline silicon
module
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4.3.1 Irradiation Analysis. In this section, the proposed
approach is used to simulate the impact of varying solar irradiance
at a given temperature on the behavior of a PV module. The esti-
mated parameters, of the three PV modules, at different irradiance
levels (1000 W/m2, 800 W/ m2, 600 W/m2, 400 W/m2 and
200 W/m2) and at a constant temperature (25 °C) as well as the
RMSE values are provided in Table 7.

The electric current is then estimated and shown in Figs. 20–22
for each module. Analysis of these results reveals an excellent fit
between the simulated and experimental I–V data. In addition, the
ImLM approach could achieve low RMSE values when used to
simulate the I–V characteristics at various irradiations. The
impact of increasing irradiance on the electrical behavior of PV
modules is clearly visible. Indeed, Voc, Isc, and Pmax simultaneously

Fig. 15 Comparisons between the measured data and the curves simulated by ImLM for the STP6-120/36
polycrystalline silicon module

Fig. 16 Individual errors betweenmeasured and ImLM estimated data for the STP6-120/36 polycrystalline silicon
module

Fig. 17 Relative error between simulated and measured current
data for the Photowatt-PWP 201 module

Fig. 18 Relative error between simulated and measured current
data for the STM6-40/36 module
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increased with solar irradiance. The performances of the different PV
modules have therefore improved following the increase in irradi-
ance; this is reflected in the increase of the photogenerated current Iph.

4.3.2 Temperature Analysis. For this evaluation, the PV
modules were considered at different temperatures and at a fixed
irradiance of 1000 W/m2. The parameter values and RMSE
values obtained at different temperatures are summarized in
Table 8.

Furthermore, the simulated and experimental I–V data at differ-
ent temperatures are presented in Figs. 23–25. The analysis of
these results showed excellent agreement between the simulated
and experimental I–V curves over the entire range of voltage
records. Therefore, the proposed approach can simulate the electri-
cal behavior of PV modules at different temperatures with compet-
itive accuracy. In addition, an increase in module temperature
resulted in a decrease in Voc and a slight increase in the value of
Isc. The observed temperature-dependent decrease in Voc can be
attributed to the reduced ability of the p–n junction to separate elec-
trons from holes in the photogenerated pairs. Conversely, the
increase in Isc can be attributed to the enhanced charge transport
and increased generation current I0. Also, the increase in tempera-
ture caused a decrease in the ideality factor, suggesting an improve-
ment in the quality of charge transport in the semiconductor active
layer of the modules. These results are considered to be in good
agreement with theoretical results and experimental observations
[58,80].
Therefore, it can be inferred from these two studies that the simu-

lation results are largely consistent with those obtained by other
simulation methods [43,46,66,81]. Therefore, the proposed
approach can be used as a competitive model to simulate the elec-
trical behavior of PV cells and modules under different environmen-
tal conditions.

Fig. 19 Relative error between simulated and measured current
data for the STP6-120/36 module

Fig. 20 Comparison between the estimated model and the
experimental data of thin-film ST40 at different irradiance

Table 7 The extracted parameters for three different types of PV modules by ImLM at different radiation and 25 °C

PV Module Irradiance (W/m2) Iph (A) Io (µA) Rs (Ω) Rp (Ω) n RMSE

Thin film 1000 2.6758 1.5288 1.1132 357.5984 1.5003 7.3434× 10−4

ST40 800 2.1380 1.1581 1.1253 332.8889 1.4731 7.7405× 10−4

600 1.6048 1.4419 1.1126 347.6947 1.4958 6.7411× 10−4

400 1.0675 1.8487 1.0806 362.5145 1.5245 6.3077× 10−4

200 0.5331 1.4297 1.1857 344.9832 1.4975 4.7721× 10−4

Monocrystalline 1000 3.4501 0.1715 0.3291 484.3621 1.3959 1.1462× 10−3

SM55 800 2.7604 0.1439 0.3376 459.8227 1.3811 6.6856× 10−4

600 2.0709 0.1558 0.3304 450.3085 1.3877 8.2394× 10−4

400 1.3828 0.1005 0.3966 427.1129 1.3521 7.0760× 10−4

200 0.6915 0.1465 0.2864 448.2315 1.3807 3.2067× 10−4

Multi-crystalline 1000 8.2169 0.0022 0.3438 763.5351 1.0764 1.5391× 10−3

KC200GT 800 6.5713 0.0010 0.3573 743.5235 1.0353 1.6313× 10−3

600 4.9343 0.0039 0.3373 743.0016 1.1040 1.2978× 10−3

400 3.2878 0.0015 0.3536 752.0894 1.0550 1.4262× 10−3

200 1.6462 0.0005 0.3811 690.1466 1.0032 1.4186× 10−3

Fig. 21 Comparison between the estimated model and the
experimental data of monocrystalline SM55 at different
irradiance
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Fig. 22 Comparison between the estimated model and the
experimental data of multi-crystalline KC200GT at different
irradiance

Table 8 The extracted parameters of the three photovoltaic modules using ImLM at different temperature and irradiance of
1000 W/m2

PV Module Temperature Iph (A) Io (µA) Rs (Ω) Rp (Ω) n RMSE

Thin film
ST40

25 °C 2.6758 1.5288 1.1132 357.5984 1.5003 7.3434× 10−4

40 °C 2.6809 5.6661 1.1293 364.1098 1.4765 1.3212× 10−3

55 °C 2.6920 18.6807 1.1496 295.0218 1.4498 1.8232× 10−3

70 °C 2.6923 87.5219 1.1259 367.7532 1.4806 7.7771× 10−4

Monocrystalline
SM55

25 °C 3.4501 0.1715 0.3291 484.3621 1.3959 1.1462× 10−3

40 °C 3.4694 1.0677 0.3175 521.2453 1.4114 3.4653× 10−3

60 °C 3.4946 6.9103 0.3187 484.9674 1.4052 3.7804× 10−3

Multi-crystalline 25 °C 3.4501 0.1715 0.3291 484.3621 1.3959 1.1462× 10−3

KC200GT 40 °C 3.4694 1.0677 0.3175 521.2453 1.4114 3.4653× 10−3

60 °C 3.4946 6.9103 0.3187 484.9674 1.4052 3.7804× 10−3

Fig. 23 Comparison between the estimated model and the
experimental data of thin-film ST40 at different temperature

Fig. 24 Comparison between the estimated model and the
experimental data of monocrystalline SM55 at different
temperature

Fig. 25 Comparison between the estimated model and the
experimental data of multi-crystalline KC200GT at different
temperature
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5 Conclusion
In this study, an improved variant of the Levenberg–Marquardt

algorithm is proposed to estimate the parameters of solar cell
models and PV modules and simulate their electrical behavior
under all environmental conditions quickly and accurately. The pro-
posed algorithm combines in a very simple way the Levenberg–
Marquardt algorithm and a semi-analytical method called new
reduced form. Its performance is examined in detail on single-diode
and PV module model parameter estimation problems and com-
pared to various published methods. The experimental and compar-
ative results show that the proposed algorithm can extract the
parameters accurately and efficiently and is better than or at least
comparable to other published algorithms in the literature. In addi-
tion, the tests performed on three PV modules of different types at
different irradiation levels and temperature values also suggest that
the proposed algorithm is effective and practical. In summary, the
proposed approach performs potentially well in solving the single-
diode model parameter extraction problem and in simulating I(V)
under different conditions. For this reason, the algorithm can
serve as a new alternative method for PV cell/module parameter
estimation. In the future, it will be discussed to improve the ideality
factor evaluation technique and to extend the method to the estima-
tion of the two-diode model parameters.
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Nomenclature
k = constant of Boltzmann (J/K)
m = number of points of the I–V curve measured
n = ideality factor in real conditions
q = elementary electric charge (C)
G = solar irradiation in real condition (W/m2)
H = Hessian of the function f
T = solar cells temperature in real conditions (K)

nSTC = ideality factor in STC conditions
r(p) = residuals vector
Eg = gap of the semiconductor material in the real conditions

(eV)
EgSTC = gap of the semiconductor material in STC (eV)
GSTC = solar irradiation in STC (W/m2)

I0 = saturation current in real conditions (A)
Iph = photocurrent in real conditions (A)

IphSTC = photocurrent in STC conditions (A)
I0STC = saturation current in STC conditions (A)

Rp = shunt resistance in real operating conditions (Ω)
RpSTC = shunt resistance in STC conditions (Ω)

Rs = series resistance in real operating conditions (Ω)
RsSTC = series resistance in STC conditions (Ω)
TSTC = solar cells temperature in STC conditions (K)
f (p) = modulus of the vector r(p)
Ii = measured current (A)

Ithi = estimated current (A)
J(p) = Jacobian of the vector r(p)

Greek Symbols

αIsc = temperature coefficient of the short-circuit current (A/°C)
λ = damping factor
φ = function of variable n and Rs

ϕ = cost function

Abbreviation

SIAE = Sum of individual absolute error (A)

Appendix

Table 9 IAE and IBE of ILM for the RTC France monocrystalline silicon solar cell

Measured data Simulated current data Simulated power data

Item V (V) I (A) P (W) Isim (A) IBEC (A) IAEC (A) Psim (W) IBEP (W) IAEP (W)

1 −0.2057 0.7640 −0.1572 0.7642 1.8924× 10−4 1.8924× 10−4 −0.1572 −3.8930× 10−5 3.8930× 10−5

2 −0.1291 0.7620 −0.0984 0.7628 7.5231× 10−4 7.5231× 10−4 −0.0985 −9.7120× 10−5 9.7120× 10−5

3 −0.0588 0.7605 −0.0447 0.7614 9.3346× 10−4 9.3346× 10−4 −0.0448 −5.4890× 10−5 5.4890× 10−5

4 0.0057 0.7605 0.0043 0.7602 −2.7708× 10−4 2.7708× 10−4 0.0043 −1.5800× 10−6 1.5800× 10−6

5 0.0646 0.7600 0.0491 0.7591 −8.8458× 10−4 8.8458× 10−4 0.0490 −5.7140× 10−5 5.7140× 10−5

6 0.1185 0.7590 0.0899 0.7581 −9.0569× 10−4 9.0569× 10−4 0.0898 −1.0732× 10−4 1.0732× 10−4

7 0.1678 0.7580 0.1272 0.7571 −8.6443× 10−4 8.6443·10−4 0.1270 −1.4505× 10−4 1.4505× 10−4

8 0.2132 0.7570 0.1614 0.7562 −8.2008× 10−4 8.2008× 10−4 0.1612 −1.7484× 10−4 1.7484× 10−4

9 0.2545 0.7555 0.1923 0.7551 −3.7913× 10−4 3.7913× 10−4 0.1922 −9.6490× 10−5 9.6490× 10−5

10 0.2924 0.7540 0.2205 0.7537 −3.0353× 10−4 3.0353× 10−4 0.2204 −8.8750× 10−5 8.8750× 10−5

11 0.3269 0.7505 0.2453 0.7514 9.2254× 10−4 9.2254× 10−4 0.2456 3.0158× 10−4 3.0158× 10−4

12 0.3585 0.7465 0.2676 0.7474 8.9056× 10−4 8.9056× 10−4 0.2679 3.1927× 10−4 3.1927× 10−4

13 0.3873 0.7385 0.2860 0.7402 1.6523× 10−3 1.6523× 10−4 0.2867 6.3993× 10−4 6.3993× 10−4

14 0.4137 0.7280 0.3012 0.7275 −5.3105× 10−4 5.3105× 10−4 0.3010 −2.1969× 10−4 2.1969× 10−4

15 0.4373 0.7065 0.3090 0.7070 5.4038× 10−4 5.4038× 10−4 0.3092 2.3631× 10−4 2.3631× 10−4

16 0.4590 0.6755 0.3101 0.6754 −1.1171× 10−4 1.1171× 10−4 0.3100 −5.1280× 10−5 5.1280× 10−5

17 0.4784 0.6320 0.3023 0.6310 −1.0311× 10−3 1.0311·10−3 0.3019 −4.9329× 10−4 4.9329× 10−4

18 0.4960 0.5730 0.2842 0.5721 −8.5873× 10−4 8.5873× 10−4 0.2838 −4.2593× 10−4 4.2593× 10−4

19 0.5119 0.4990 0.2554 0.4995 5.1394× 10−4 5.1394× 10−4 0.2557 2.6308× 10−4 2.6308× 10−4
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Table 10 IAE and IBE of ILM for the PVM 752 GaAs thin-film cell

Measured data Simulated current data Simulated power data

Item V (V) I (A) P (W) Isim (A) IBEC (A) IAEC (A) Psim (W) IBEP (W) IAEP (W)

1 −0.1659 0.1001 −0.0166 0.1002 5.1770 × 10−5 5.1770 × 10−5 −0.0166 −8.5900 × 10−6 8.5900× 10−6

2 −0.1281 0.1000 −0.0128 0.1001 9.6560 × 10−5 9.6560 × 10−5 −0.0128 −1.2370 × 10−5 1.2370× 10−5

3 −0.0888 0.0999 −0.0089 0.1000 1.3915 × 10−5 1.3915 × 10−5 −0.0089 −1.2360 × 10−5 1.2360× 10−5

4 −0.0490 0.0999 −0.0049 0.1000 8.1020 × 10−5 8.1020 × 10−5 −0.0049 −3.9700 × 10−6 3.9700× 10−6

5 −0.0102 0.0999 −0.0010 0.0999 2.4340 × 10−5 2.4340 × 10−5 −0.0010 −2.5000 × 10−7 2.5000× 10−7

6 0.0275 0.0998 0.0027 0.0999 6.9280 × 10−5 6.9280 × 10−5 0.0027 1.9100 × 10−6 1.9100× 10−6

7 0.0695 0.0999 0.0069 0.0998 −9.2070 × 10−5 9.2070 × 10−5 0.0069 −6.4000 × 10−6 6.4000× 10−6

8 0.1061 0.0998 0.0106 0.0998 −4.5530 × 10−5 4.5530 × 10−5 0.0106 −4.8300 × 10−6 4.8300× 10−6

9 0.1460 0.0998 0.0146 0.0997 −1.0382 × 10−4 1.0382 × 10−4 0.0146 −1.5160 × 10−5 1.5160× 10−5

10 0.1828 0.0997 0.0182 0.0996 −5.7570 × 10−5 5.7570 × 10−5 0.0182 −1.0520 × 10−5 1.0520× 10−5

11 0.2230 0.0997 0.0222 0.0996 −1.1630 × 10−4 1.1630 × 10−4 0.0222 −2.5930 × 10−5 2.5930× 10−5

12 0.2600 0.0996 0.0259 0.0995 −7.0360 × 10−5 7.0360 × 10−5 0.0259 −1.8290 × 10−5 1.8290× 10−5

13 0.3001 0.0997 0.0299 0.0995 −2.2897 × 10−4 2.2897E-04 0.0299 −6.8710 × 10−5 6.8710× 10−5

14 0.3406 0.0996 0.0339 0.0994 −1.8822 × 10−4 1.8822 × 10−4 0.0339 −6.4110 × 10−5 6.4110× 10−5

15 0.3789 0.0995 0.0377 0.0994 −1.4438 × 10−4 1.4438 × 10−4 0.0376 −5.4710 × 10−5 5.4710× 10−5

16 0.4168 0.0994 0.0414 0.0993 −1.0025 × 10−4 1.0025 × 10−4 0.0414 −4.1780 × 10−5 4.1780× 10−5

17 0.4583 0.0994 0.0456 0.0992 −1.6223 × 10−4 1.6223 × 10−4 0.0455 −7.4350 × 10−5 7.4350× 10−5

18 0.4949 0.0993 0.0491 0.0992 −1.1855 × 10−4 1.1855 × 10−4 0.0491 −5.8670 × 10−5 5.8670× 10−5

19 0.5370 0.0993 0.0533 0.0991 −1.8806 × 10−4 1.880 × ·10−4 0.0532 −1.0099 × 10−4 1.0099× 10−4

20 0.5753 0.0992 0.0571 0.0990 −1.6185 × 10−4 1.6185 × 10−4 0.0570 −9.3110 × 10−5 9.3110× 10−5

21 0.6123 0.0990 0.0606 0.0989 −5.5890 × 10−5 5.5890 × 10−5 0.0606 −3.4220 × 10−5 3.4220× 10−5

22 0.6546 0.0988 0.0647 0.0988 −2.9650 × 10−5 2.9650 × 10−5 0.0647 −1.9410 × 10−5 1.9410× 10−5

23 0.6918 0.0983 0.0680 0.0985 1.7903 × 10−4 1.7903 × 10−4 0.0681 1.2385 × 10−4 1.2385E-04
24 0.7318 0.0977 0.0715 0.0978 1.1933 × 10−4 1.1933 × 10−4 0.0716 8.7320 × 10−5 8.7320× 10−5

25 0.7702 0.0963 0.0742 0.0964 1.1322 × 10−4 1.1322 × 10−4 0.0743 8.7200 × 10−5 8.7200× 10−5

26 0.8053 0.0937 0.0755 0.0937 1.1150 × 10−5 1.1150 × 10−5 0.0755 8.9800 × 10−6 8.9800× 10−6

27 0.8329 0.0900 0.0750 0.0898 −1.5215 × 10−4 1.5215 × 10−4 0.0748 −1.2673 × 10−4 1.2673× 10−4

28 0.8550 0.0855 0.0731 0.0851 −4.3454 × 10−4 4.3454 × 10−4 0.0727 −3.7153 × 10−4 3.7153× 10−4

29 0.8738 0.0799 0.0698 0.0795 −4.4913 × 10−4 4.4913 × 10−4 0.0694 −3.9245 × 10−4 3.9245× 10−4

30 0.8887 0.0743 0.0660 0.0738 −4.8008 × 10−4 4.8008 × 10−4 0.0656 −4.2665 × 10−4 4.2665× 10−4

31 0.9016 0.0683 0.0616 0.0680 −2.7316 × 10−4 2.7316 × 10−4 0.0613 −2.4629 × 10−4 2.4629× 10−4

32 0.9141 0.0618 0.0565 0.0616 −2.3152 × 10−4 2.3152 × 10−4 0.0563 −2.1163 × 10−4 2.1163× 10−4

33 0.9248 0.0555 0.0513 0.0554 −1.2697 × 10−4 1.2697 × 10−4 0.0512 −1.1743 × 10−4 1.1743× 10−4

34 0.9344 0.0493 0.0461 0.0493 −4.2500 × 10−6 4.2500 × 10−6 0.0461 −3.9700 × 10−6 3.9700× 10−6

35 0.9445 0.0422 0.0399 0.0424 1.8437 × 10−4 1.8437 × 10−4 0.0400 1.7414 × 10−4 1.7414× 10−4

36 0.9533 0.0357 0.0340 0.0359 2.4362 × 10−4 2.4362 × 10−4 0.0343 2.3225 × 10−4 2.3225× 10−4

37 0.9618 0.0291 0.0280 0.0294 2.6624 × 10−4 2.6624 × 10−4 0.0282 2.5607 × 10−4 2.5607× 10−4

38 0.9702 0.0222 0.0215 0.0225 3.3683 × 10−4 3.3683 × 10−4 0.0219 3.2680 × 10−4 3.2680× 10−4

39 0.9778 0.0157 0.0154 0.0161 3.8830 × 10−4 3.8830 × 10−4 0.0157 3.7968 × 10−4 3.7968× 10−4

40 0.9852 0.0092 0.0091 0.0096 3.7476 × 10−4 3.7476 × 10−4 0.0094 3.6921 × 10−4 3.6921× 10−4

41 0.9926 0.0026 0.0026 0.0028 2.4049 × 10−4 2.4049 × 10−4 0.0028 2.3871 × 10−4 2.3871× 10−4

42 0.9999 −0.0040 −0.0040 −0.0040 −8.6100 × 10−6 8.6100 × 10−6 −0.0040 −8.6100 × 10−6 8.6100× 10−6

43 1.0046 −0.0085 −0.0085 −0.0085 −2.1750 × 10−5 2.1750 × 10−5 −0.0086 −2.1850 × 10−5 2.1850× 10−5

44 1.0089 −0.0124 −0.0125 −0.0127 −3.1910 × 10−4 3.1910 × 10−4 −0.0128 −3.2194 × 10−4 3.2194× 10−4

SIAE 7.2844 × 10−3 5.2639× 10−3

Table 9 Continued

Measured data Simulated current data Simulated power data

Item V (V) I (A) P (W) Isim (A) IBEC (A) IAEC (A) Psim (W) IBEP (W) IAEP (W)

20 0.5265 0.4130 0.2174 0.4135 4.7620× 10−4 4.7620× 10−4 0.2177 2.5072× 10−4 2.5072× 10−4

21 0.5398 0.3165 0.1708 0.3172 6.7045× 10−4 6.7045× 10−4 0.1712 3.6191× 10−4 3.6191× 10−4

22 0.5521 0.2120 0.1170 0.2120 3.8350× 10−4 3.8350× 10−5 0.1171 2.1170× 10−5 2.1170× 10−5

23 0.5633 0.1035 0.0583 0.1027 −8.3834× 10−4 8.3834× 10−4 0.0578 −4.7224× 10−4 4.7224× 10−4

24 0.5736 −0.0100 −0.0057 −0.0093 7.1851× 10−4 7.1851× 10−4 −0.0053 4.1214× 10−4 4.1214× 10−4

25 0.5833 −0.1230 −0.0717 −0.1244 −1.3649× 10−3 1.3649× 10−3 −0.0725 −7.9614× 10−4 7.9614× 10−4

26 0.5900 −0.2100 −0.1239 −0.2091 8.7223× 10−4 8.7223× 10−4 −0.1234 5.1462× 10−4 5.1462× 10−4

SIAE 1.8341× 10−2 6.6414× 10−3

Journal of Solar Energy Engineering AUGUST 2022, Vol. 144 / 041005-17



Table 12 IAE and IBE of ILM for the STM6-40/36 monocrystalline silicon module

Measured data Simulated current data Simulated power data

Item V (V) I (A) P (W) Isim (A) IBEC (A) IAEC (A) Psim (W) IBEP (W) IAEP (W)

1 0 1.6630 0 1.6635 4.5761× 10−4 4.5761 × 10−4 0 0 0
2 0.1180 1.6630 0.1962 1.6633 2.5176× 10−4 2.5176 × 10−4 0.1963 2.9710× 10−5 2.9710× 10−5

3 2.2370 1.6610 3.7157 1.6596 −1.4486× 10−3 1.4486 × 10−3 3.7124 −3.2405× 10−3 3.2405× 10−3

4 5.4340 1.6530 8.9824 1.6539 9.1563× 10−4 9.1563 × 10−4 8.9874 4.9755× 10−3 4.9755× 10−3

5 7.2600 1.6500 11.9790 1.6506 5.6742× 10−4 5.6742 × 10−4 11.9831 4.1195× 10−3 4.1194× 10−3

6 9.6800 1.6450 15.9236 1.6454 4.3244× 10−4 4.3244 × 10−4 15.9278 4.1860× 10−3 4.1860× 10−3

7 11.5900 1.6400 19.0076 1.6392 −7.6435× 10−4 7.6435 × 10−4 18.9987 −8.8588× 10−3 8.8588× 10−3

8 12.6000 1.6360 20.6136 1.6337 −2.2840× 10−3 2.2840 × 10−3 20.5848 −2.8778× 10−2 2.8778× 10−2

9 13.3700 1.6290 21.7797 1.6273 −1.7114× 10−4 1.7114 × 10−3 21.7568 −2.2882× 10−2 2.2882× 10−2

10 14.0900 1.6190 22.8117 1.6183 −6.8572× 10−4 6.8572 × 10−4 22.8020 −9.6618× 10−3 9.6618× 10−3

11 14.8800 1.5970 23.7634 1.6031 6.0652× 10−4 6.0652 × 10−3 23.8536 9.0250× 10−2 9.0250× 10−2

12 15.5900 1.5810 24.6478 1.5816 5.8170× 10−4 5.8170 × 10−4 24.6569 9.0687× 10−3 9.0687× 10−3

13 16.4000 1.5420 25.2888 1.5423 3.2357× 10−4 3.2357 × 10−4 25.2941 5.3066× 10−3 5.3066× 10−3

14 16.7100 1.5240 25.4660 1.5212 −2.7787× 10−3 2.7787 × 10−3 25.4196 −4.6432× 10−2 4.6432× 10−2

15 16.9800 1.5000 25.4700 1.4992 −7.9746× 10−4 7.9746 × 10−4 25.4565 −1.3541× 10−2 1.3541× 10−2

16 17.1300 1.4850 25.4381 1.4853 2.6839× 10−4 2.6839 × 10−4 25.4426 4.5975× 10−3 4.5975× 10−3

17 17.3200 1.4650 25.3738 1.4656 6.4118× 10−4 6.4118 × 10−4 25.3849 1.1105× 10−2 1.1105× 10−2

18 17.9100 1.3880 24.8591 1.3876 −3.9886× 10−4 3.9886 × 10−4 24.8519 −7.1435× 10−3 7.1435× 10−3

19 19.0800 1.1180 21.3314 1.1184 3.9011× 10−4 3.9011 × 10−4 21.3389 7.4432× 10−3 7.4432× 10−3

20 21.0200 0 0 0 −2.5910× 10−5 2.5910 × 10−5 −0.0005 −5.4456× 10−4 5.4456× 10−4

SIAE 2.1790 × 10−2 2.8216× 10−1

Table 11 IAE and IBE of ILM for the Photowatt-PWP201 polycrystalline silicon module

Measured data Simulated current data Simulated power data

Item V (V) I (A) P (W) Isim (A) IBEC (A) IAEC (A) Psim (W) IBEP (W) IAEP (W)

1 −1.9426 1.0345 −2.0096 1.0332 −1.2655× 10−3 1.2655× 10−3 −2.0072 2.4583× 10−3 2.4583× 10−3

2 0.1248 1.0315 0.1287 1.0305 −1.0260× 10−3 1.0260× 10−3 0.1286 −1.2805× 10−4 1.2805× 10−4

3 1.8093 1.0300 1.8636 1.0282 −1.7900× 10−3 1.7900× 10−3 1.8603 −3.2386× 10−3 3.2386× 10−3

4 3.3511 1.0260 3.4382 1.0261 9.4810× 10−5 9.4810× 10−3 3.4385 3.1773× 10−4 3.1773× 10−4

5 4.7622 1.0220 4.8670 1.0240 2.0432·10−3 2.0432× 10−3 4.8767 9.7302× 10−3 9.7302× 10−3

6 6.0538 1.0180 6.1628 1.0219 3.8830× 10−3 3.8830× 10−3 6.1863 2.3507× 10−2 2.3507× 10−2

7 7.2364 1.0155 7.3486 1.0193 3.7753× 10−3 3.7753× 10−3 7.3759 2.7320× 10−2 2.7320× 10−2

8 8.3189 1.0140 8.4354 1.0156 1.5978× 10−3 1.5978× 10−3 8.4487 1.3292× 10−2 1.3292× 10−2

9 9.3097 1.0100 9.4028 1.0098 −2.0876× 10−4 2.0876× 10−4 9.4009 −1.9435× 10−3 1.9435× 10−3

10 10.2163 1.0035 10.2521 1.0002 −3.2882× 10−3 3.2882× 10−3 10.2185 −3.3594× 10−2 3.3594× 10−2

11 11.0449 0.9880 10.9124 0.9846 −3.4236× 10−3 3.4236× 10−3 10.8745 −3.7813× 10−2 3.7813× 10−2

12 11.8018 0.9630 11.3651 0.9601 −2.9133× 10−3 2.9133× 10−3 11.3308 −3.4382× 10−2 3.4382× 10−2

13 12.4929 0.9255 11.5622 0.9239 −1.6497× 10−3 1.6497× 10−3 11.5416 −2.0610× 10−2 2.0610× 10−2

14 13.1231 0.8725 11.4499 0.8736 1.1122× 10−3 1.1122× 10−3 11.4645 1.4595× 10−2 1.4595× 10−2

15 13.6983 0.8075 11.0614 0.8083 7.8919× 10−4 7.8919× 10−4 11.0722 1.0811× 10−2 1.0811× 10−2

16 14.2221 0.7265 10.3324 0.7286 2.1415× 10−3 2.1415× 10−3 10.3628 3.0457× 10−2 3.0457× 10−2

17 14.6995 0.6345 9.3268 0.6367 2.2012× 10−3 2.2012× 10−3 9.3592 3.2356× 10−2 3.2356× 10−2

18 15.1346 0.5345 8.0894 0.5355 9.5627× 10−4 9.5627× 10−4 8.1039 1.4473× 10−2 1.4473× 10−2

19 15.5311 0.4275 6.6395 0.4282 6.8635× 10−4 6.8635× 10−4 6.6502 1.0660× 10−2 1.0660× 10−2

20 15.8929 0.3185 5.0619 0.3178 −6.9550× 10−4 6.9550× 10−4 5.0508 −1.1054× 10−2 1.1054× 10−2

21 16.2229 0.2085 3.3825 0.2069 −1.5548× 10−3 1.5548× 10−3 3.3573 −2.5223× 10−2 2.5223× 10−2

22 16.5241 0.1010 1.6689 0.0976 −3.4188× 10−3 3.4188× 10−3 1.6124 −5.6492× 10−2 5.6492× 10−2

23 16.7987 −0.0080 −0.1344 −0.0086 −6.3578× 10−4 6.3578× 10−4 −0.1451 −1.0680× 10−2 1.0680× 10−2

24 17.0499 −0.1110 −1.8925 −0.1110 1.2650× 10−5 1.2650× 10−5 −1.8923 2.1569× 10−4 2.1569× 10−4

25 17.2793 −0.2090 −3.6114 −0.2086 4.2140× 10−4 4.2140× 10−4 −3.6041 7.2816× 10−3 7.2816× 10−3

26 17.4885 −0.3030 −5.2990 −0.3008 2.1548× 10−3 2.1548× 10−3 −5.2613 3.7685× 10−2 3.7685× 10−2

SIAE 4.3740× 10−2 4.7031× 10−1

Table 13 IAE and IBE of ILM for the STP6-120/36 polycrystalline silicon module

Measured data Simulated current data Simulated power data

Item V (V) I (A) P (W) Isim (A) IBEC (A) IAEC (A) Psim (W) IBEP (W) IAEP (W)

1 0 7.4800 0 7.4730 −6.9871 × 10−3 6.9871 × 10−3 0 0 0
2 9.0600 7.4500 67.5022 7.4506 5.7112× 10−4 5.7112 × 10−4 67.5022 5.1743× 10−3 5.1743× 10−3

3 9.7400 7.4200 72.5110 7.4447 2.4665× 10−2 2.4665 × 10−2 72.5110 2.4024× 10−1 2.4024× 10−1
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