Etudes d'Intégration des Energies Renewables dans les Reseaux Electriques de Transport

Jour 1: Reseaux de transport et PSS/E

Kwami Senam Sedzro, PhD

Curriculum

- Jour 1: Réseaux Electriques de Transport et PSS/E
 - Réseaux électriques de transport: Fonctions et composantes
 - Réseaux électriques de transport du futur
 - Intégration des énergies renouvelables
 - $\,\circ\,$ Le logiciel PSS/E
- Jour 2: Modélisation et étude du réseaux de transport a l'aide du logiciel PSS/E
 - Modélisation d'un réseau électrique de transport dans l'environnement PSS/E
 - Etude des réseaux électriques de transport avec PSS/E
- Jour 3: Analyse de l'impact des énergies renouvelables sur les réseaux électriques de transport
 - Modélisation des énergies renouvelables dans l'environnement PSS/E

- Etude de l'impact des énergies renouvelables sur le réseau de transport – Ecoulement de puissances
- Jour 4: Analyse de l'impact des énergies renouvelables sur les réseaux électriques de transport
 - Etude de l'impact des énergies renouvelables sur le réseau de transport – Analyse des contingences
 - Etude de l'impact des énergies renouvelables sur le réseau de transport – Analyse des puissances de court-circuit
- Jour 5: Introduction aux études des stabilité dynamique des réseaux de transport
 - Introduction aux études des stabilité dynamique des réseaux de transportSolar photovoltaic modelling

Réseaux Electriques de Transport et PSS/E

Jour 1

Structure Générale des Réseaux Eletriques

Réseaux électriques de transport: Fonctions et composantes

Réseaux Electriques de Transport du Futur

Modeling Tools for Renewable Integration Planning in the Bulk Power System (BPS)

- Learning Objectives
- Potential Impacts of Renewables on BPS
- Common Renewable Integration Screening Metrics
- Integration Challenges and Modeling Requirements
- The Limitations of PSS/E Modeling

Learning Objectives

- Understanding potential impacts of renewables on the bulk power system (BPS) operation
- Identifying key integration metrics
- Choosing the right tools for integration impact assessment

- BPS operational requirements:
 - Supply must always be balanced with demand and network losses
 - Safe, dependable, and stable operation
- Three broad categories of challenge
 - Stability
 - Power quality and fast response to load variation
 - Flexibility
 - Compensates for supply-demand imbalance
 - Adequacy
 - Ability to meet end-user demand and energy needs, at all times
 - Accounts for planned and possible outages

Source: DNVGL

STABILITY

- Renewables are mostly coupled to the grid via electronic converters
- Inverter-based resources (IBR) are susceptible to create weak grid conditions
 - Little or no inertia for synchronizing power
 - Power output depends on high frequency electronic controls
 - Controls themselves depend on stable reference voltage
 - Voltage reference becomes less stable in weak grid conditions
 - As more conventional generation is replaced IBRs, grid stiffness reduces
 - Primary frequency response needs will increase
- Underfrequency load shedding may prove ineffective

FLEXIBILITY / ADEQUACY

- Increased balancing issues
 - Steep demand ramp
 - Less predictable variability
- Operating reliability
 - Ability to withstand unanticipated component losses or disturbances

HECO's "duck curve," showing increased impacts of DPV on system load for the worst day of the year [D. Lew *et al.*]

Common Renewable Integration Screening Metrics

- Grid strength
 - the sensitivity of the resource's terminal voltage to variations of current injections
 - how "stiff" the grid is in response to small perturbations such as changes in load or switching of equipment
 - Weak grids can pose challenges for connecting new resources and particularly for connecting inverter- based resources
- Grid strength-based metrics
 - SCR, WSCR, CSCR, SCRIF, SDSCR

Common Renewable Integration Screening Metrics

Metric	Formula	
Short-Circuit Ratio (SCR)	$SCR_i = \frac{SCMVA_i}{P_{DPV_i}}$	$SCMVA_i$: Short-circuit capacity in MVA at node <i>i</i>
Weighted Short-Circuit Ratio (WSCR)	$WSCR = \frac{\sum_{i}^{N} SCMVA_{i}P_{DPV_{i}}}{(\sum_{i}^{N} P_{DPV_{i}})^{2}}$	ΔV_i : Voltage of node <i>i</i>
Composite Short-Circuit Ratio (CSCR)	$CSCR = \frac{CSCMVA}{\sum_{i}^{N} P_{DPV_{i}}}$	V_i . Voltage of hode i $Z_{DPV_{ij}}$: Element in row i , column j of the Thevenin equivalent impedance matrix of the set of DPVs
Short-Circuit Ratio with Interaction Factors (SCRIF)	$SCRIF = \frac{SCMVA_i}{P_{DPV_i} + \sum_{j \neq i}^{N} \frac{\Delta V_i}{\Delta V_j} P_{DPV_j}}$	$\theta_{Z_{ij}}$: Angle of $Z_{DPV_{ij}}$ θ_{V_i} : Angle of V_i
Site Dependent Short- Circuit Ratio (SDCSR)	$SDSCR_{i} = \frac{ V_{i} ^{2}/ Z_{DPV_{ii}} }{(P_{DPV_{i}} + \sum_{j \neq i}^{N} P_{DPV_{j}} \frac{ Z_{DPV_{ij}} }{ Z_{DPV_{ii}} } \frac{ V_{i} }{ V_{j} } \cos(\theta)}$	$(\theta_{Z_{ii}} - \theta_{Z_{ij}} + \theta_{V_i} - \theta_{V_j}))$

Common Renewable Integration Screening Metrics

Metric		Simple calculation using short circuit program	Accounts for nearby inverter based equipment	Provides common metric across a larger group of VER	Accounts for weak electrical coupling between plants within larger group	Considers non- active power inverter capacity*	Able to consider individual sub- plants within larger group
SCR	Short Circuit Ratio	**	X	X	X	X	X
CSCR	Composite SCR	*	**	**	X	X	X
WSCR-MW	Weighted SCR using MW	*	**	**	*	X	X
WSCR-MVA	Weighted SCR using MVA	*	**	**	*	**	X
SCRIF	Multi-Infeed SCR	X	**	X	**	**	**

* e.g., STATCOMs or partial power inverter-based resources

- X The metric cannot be applied for the described purpose
- The metric can be applied to a limited extent or with some additional effort or processing
- ★ ★ The metric is easily or directly applied for the described purpose

Source: NERC 2017

Integration Challenges and Modeling Requirements

Modeling requirements vary with system strength

Integration Challenges and Modeling Requirements

- Generic Positive Sequence Stability Model
 - Used for interconnection-wide modeling
 - Required for every resource seeking interconnection to the BES
 - Expected to accurately represent the general dynamic behavior of the IBR
- Detailed Positive Sequence Stability Model
 - Required for interconnection stability studies
 - Uses the most detailed model available for the study(e.g., positive sequence transient stability analyses)
 - Detailed models from the IBR manufacturer
- Electromagnetic Transient (EMT) Model
 - Required if a weak grid condition has been identified or suspected

The Limitations of PSS/E Modeling

- PSS/E is a positive sequence phasor domain modeling tool
- Can lead to inaccurate stability results in weak grid conditions
- Positive-sequence modeling tools cannot fully capture transients in weak grid conditions
- Electromagnetic transient modeling is required
- Positive sequence phasor domain modeling software (e.g., PSS/E)
 - Iteratively solve a system of equations to satisfy a set of constraints in the phase domain.
- EMT software (e.g., PSCAD)
 - Solves systems of differential equations which describe the three-phase electrical network in the time domain
 - Allows unbalanced faults, harmonics, and fast transients

Lessons Learned from BPS-level Integration Studies

- System strength metrics are solely for screening purpose and are considered as indicators
- The increase of IBR share of the generation mix is likely to induce reduction in system strength
- Interconnection studies will require more and more EMT modeling

Etudes d'Intégration des Energies Renewables dans les Reseaux Electriques de Transport

Jour 2: Modélisation et étude des réseaux de transport a l'aide du logiciel PSS/E

Kwami Senam Sedzro, PhD

Curriculum

- Jour 1: Réseaux Electriques de Transport et PSS/E
 - Réseaux électriques de transport: Fonctions et composantes
 - Réseaux électriques de transport du futur
 - Intégration des énergies renouvelables
 - Le logiciel PSS/E
- Jour 2: Modélisation et étude des réseaux de transport a l'aide du logiciel PSS/E
 - Modélisation d'un réseau électrique de transport dans l'environnement PSS/E
 - Etude des réseaux électriques de transport avec PSS/E
- Jour 3: Analyse de l'impact des énergies renouvelables sur les réseaux électriques de transport
 - Modélisation des énergies renouvelables dans l'environnement PSS/E

- Etude de l'impact des énergies renouvelables sur le réseau de transport – Ecoulement de puissances
- Jour 4: Analyse de l'impact des énergies renouvelables sur les réseaux électriques de transport
 - Etude de l'impact des énergies renouvelables sur le réseau de transport – Analyse des contingences
 - Etude de l'impact des énergies renouvelables sur le réseau de transport – Analyse des puissances de court-circuit
- Jour 5: Introduction aux études des stabilité dynamique des réseaux de transport
 - Introduction aux études des stabilité dynamique des réseaux de transport

Day 2: Modélisation et étude des réseaux de transport a l'aide du logiciel PSS/E

- Creation d'un modèle PSS/E
- Ecoulement de puissance
- PV Analysis
- QV Analysis

Small Test Case

Consider the PJM 5-bus system shown in Figure 2. Line data are listed in Table 4. Generator and load data are listed in Table 5. Assume that bus A is the reference bus.

Figure 2. One-line diagram of the PJM 5-bus system

	Tuble 1. Ellie Duu						
ł.	Line	From Bus	To Bus	Reactance (p.u.)	Flow Limit (MW)		
	A->B	Α	В	0.0291	1000		
	A->D	Α	D	0.0304	1000		
	B->C	В	С	0.0108	1000		
	C->D	С	D	0.0297	1000		
	D->E	D	E	0.0297	240		
	E->A	E	Α	0.0064	1000		

Table 4 Line Data

Table 5. Generator and Load Data					
Participant	Participant	Location	Min MW	Max MW	Price
Name	Туре				(\$/MWh)
Alta	Generator	Bus A	0	110	14
Park City	Generator	Bus A	0	100	15
Solitude	Generator	Bus C	0	520	30
Sundance	Generator	Bus D	0	200	29
Brighton	Generator	Bus E	0	600	10

Participant	Participant	Participant Location	
Name	Туре		
LSE B	Load	Bus B	300
LSE C	Load	Bus C	300
LSE D	Load	Bus D	300

Small Test Case

Figure 2. One-line diagram of the PJM 5-bus system

- Simple system
 - 1. Start PSS/E
 - 2. Create a new file:
 - a. Click File/New. A small dialog box with five option buttons will be opened.
 - b. Select the option "Network Case" and click OK. This will open a "Build New Case" dialog box.
 - c. Set the "Base MVA" as "100.00". Then there will be two blank spaces corresponding to "heading line 1" and "heading line 2" to be filled out.
 - d. A spreadsheet interface will appear, where you will build your new case.

- Simple system
 - 3. Needed data
 - a. Bus Data:
 - Base KV for each bus
 - Bus type: Swing, PV, PQ
 - b. Branch Data (Transmission lines):
 - "From" bus and "To" bus numbers
 - R, X, and Line charging values in per unit
 - c. Load Data:
 - The "Bus number" to which the load is connected
 - P (in MW) and Q (MVAR) of the load
 - d. Generator Data:
 - "Bus number" of the bus to which the generator is connected
 - Real power rating (in MW). Maximum and minimum limits for reactive power (in MVAr)
 - e. Transformer Data:
 - "From" bus and "To" bus numbers

- Simple system
 - 4. Save the case
 - a. Click **File→Save Case As** from the File menu. This will open a "Save / Show network data" dialog box
 - b. Select the "Case Data" tab
 - c. In the "destination" frame, click on the button with 3 dots to select your destination. The file path should appear in the destination text box (on the left of the button)
 - d. Click OK and Close.

Your case is ready!

Load flow analysis

- Purpose
 - Given the demand at all buses and the power production of each power plant, find the power flow in each branch of the network.
- Technical background
 - Solve the power system network defined by:
 - $I_n = Y_{nn}V_n$
- Input:
 - Transmission lines: impedances and charging admittances
 - Transformers: impedances and tap ratios
 - Shunt-connected devices (static capacitors and reactors): admittances
 - Loads: power consumption
 - Generators: real power output, voltage magnitude or reactive power output, maximum and minimum reactive power output capability

Load flow analysis

- Output:
 - Voltage magnitude, where unknown
 - Voltage angle at every bus
 - Reactive power output of generators, where unknown
 - Real and reactive power, and current flow in each transmission line and transformer
- Solve power flow
 - Go to the 4th toolbar and click on the Solve Load Flow icon
 - The "Load Flow Solutions" dialog box opens
 - Click on either the Newton or Gauss tab
 - Select the solution method you would like to use
 - Set the remaining parameters
 - Click Solve
 - Use the power flow reports feature to check results

- Purpose
 - Evaluate how system voltages change as a result of increasing real power transfers.
- Technical background
 - The voltage at a given bus compared to the amount of transfer is non-linear and could become unstable when a small amount of power transfer results in a very large voltage decrease.

- Purpose
 - Evaluate how system voltages change as a result of increasing real power transfers.
- Technical background
 - The voltage at a given bus compared to the amount of transfer is non-linear and could become unstable when a small amount of power transfer results in a very large voltage decrease.

Analysis

- Launch PSS/E
- Open a case on which to run the analysis
- Open the corresponding slider diagram
- Decide of a source subsystem and of a sink subsystem
- Save both files in a directory dedicated for the PV analysis
- Create 3 new text files with extensions ".sub", ".mon", and ".con"

— If :

- the system considered is the example case sample.sav,
- the source subsystem made of buses 101 and 102,
- the sink subsystem made of "Area 1"
- The content of these 3 files can be as shown in the next slide

PV Analysis pv_analysis.sub - Notepad pv_analysis.mon - Notepad \times File Edit Format View Help File Edit Format View Help SUBSYSTEM SOURCE MONITOR VOLTAGE RANGE SUBSYSTEM MON 0.950 1.050 BUS 101 MONITOR BRANCHES IN SUBSYSTEM MON BUS 102 MONITOR TIES FROM SUBSYSTEM MON END END SUBSYSTEM STNK AREA 1 pv_analysis.con - Notepad \times END File Edit Format View Help SUBSYSTEM CON STNGLE LITNE IN SUBSYSTEM CON ARFA 1 SINGLE TIE FROM SUBSYSTEM CON END END SUBSYSTEM MON AREA 1 FND END 15

Analysis

- Run PV analysis
 - Go to Power Flow \rightarrow Contingency, Reliability, PV/QV analysis \rightarrow PV analysis
 - Or click on the PV analysis icon on the 4th toolbar
 - The "PV Analysis" dialog box opens
 - Next, build the distribution factor data file ("*.dfx")
 - Click the "DFAX" button
 - The "Build Distribution Factor Data File" dialog box appears
 - Fill in the file request boxes the appropriate file paths for subsystem file, monitored element file, and contingency file
 - Name the "*.dfx" file in the "Distribution Factor file" box and click OK
 - In the "PV Analysis" dialog box, name the PV results output file and click OK

Exporting reports

- Go to Power Flow → Reports → Export ACCC, PV/QV results to excel
- Fill in any relevant box
Etudes d'Intégration des Energies Renewables dans les Reseaux Electriques de Transport

Jour 3: Modélisation et étude des réseaux de transport a l'aide du logiciel PSS/E

Kwami Senam Sedzro, PhD

Curriculum

- Jour 1: Réseaux Electriques de Transport et PSS/E
 - Réseaux électriques de transport: Fonctions et composantes
 - Réseaux électriques de transport du futur
 - Intégration des énergies renouvelables
 - Le logiciel PSS/E
- Jour 2: Modélisation et étude des réseaux de transport a l'aide du logiciel PSS/E
 - Modélisation d'un réseau électrique de transport dans l'environnement PSS/E
 - Etude des réseaux électriques de transport avec PSS/E
- Jour 3: Analyse de l'impact des énergies renouvelables sur les réseaux électriques de transport
 - Modélisation des énergies renouvelables dans l'environnement PSS/E

- Etude de l'impact des énergies renouvelables sur le réseau de transport – Ecoulement de puissances
- Jour 4: Analyse de l'impact des énergies renouvelables sur les réseaux électriques de transport
 - Etude de l'impact des énergies renouvelables sur le réseau de transport – Analyse des contingences
 - Etude de l'impact des énergies renouvelables sur le réseau de transport – Analyse des puissances de court-circuit
- Jour 5: Introduction aux études des stabilité dynamique des réseaux de transport
 - Introduction aux études des stabilité dynamique des réseaux de transport

Jour 3: Analyse de l'impact des énergies renouvelables sur les réseaux électriques de transport

- QV Analysis
- Fault Analysis
- Modélisation des énergies renouvelables dans l'environnement PSS/E
- Etude de l'impact des énergies renouvelables sur le réseau de transport Ecoulement de puissances

Exporting reports

- Go to Power Flow → Reports → Export ACCC, PV/QV results to excel
- Fill in any relevant box

• Purpose

QV analysis studies how variations in reactive power injection at a bus affect the voltage at that same bus.

Analysis

- Launch PSS/E
- Open a case on which to run the analysis
- Open the corresponding slider diagram
- Decide of a source subsystem and of a sink subsystem
- Save both files in a directory dedicated for the QV analysis
- Create 3 new text files with extensions ".sub", ".mon", and ".con"

— If :

- the system considered is the example case sample.sav,
- the bus considered for analysis is 154
- The content of these 3 files can be as shown in the next slide

qv_analysis.sub - Notepad	- D X	(
SUBSYSTEM CON BUS 154 END	File Edit Format View Help MONITOR VOLTAGE RANGE SUBSYSTEM MON 0.950 1.050 END	<
SUBSYSTEM MON BUS 154 END		~
END		
	SINGLE LINE IN SUBSYSTEM CON SINGLE TIE FROM SUBSYSTEM CON END	

Analysis

- Run QV analysis
 - Go to Power Flow \rightarrow Contingency, Reliability, PV/QV analysis \rightarrow QV analysis
 - Or click on the QV analysis icon on the 4th toolbar
 - The "QV Analysis" dialog box opens
 - Next, build the distribution factor data file ("*.dfx")
 - Click the "DFAX" button
 - The "Build Distribution Factor Data File" dialog box appears
 - Fill in the file request boxes the appropriate file paths for subsystem file, monitored element file, and contingency file
 - Name the "*.dfx" file in the "Distribution Factor file" box and click OK
 - In the "QV Analysis" dialog box, name the QV results output file and click OK

Exporting reports

- Go to Power Flow → Reports → Export ACCC, PV/QV results to excel
- Fill in any relevant box

Fault Analysis

Short Circuit Analysis

Fault analysis data requirements

• Bus Data

- Base KV,
- G-Shunt (MW) (positive, negative, and zero sequence)
- B-Shunt (MVAR) (positive, negative, and zero sequence)
- Bus type
 - Swing Bus (the generator bus used to balance flows)
 - PV bus (a voltage control bus, and generally, a generator bus)
 - PQ bus (a non-voltage control bus, generally non generator bus).

• Branch Data (Transmission lines)

- "From" bus and "To" bus numbers
- R, X, and Line charging (positive and zero sequence) values in per unit.
- Load Data
 - The "Bus number" of the bus to which it is connected.
 - P (in MW) and Q (MVAR) of the load.

• Generator or Machine Data

- The "Bus number" to which it is connected.
- Generator Real Power Rating (in MW). Maximum and minimum limits for reactive power (in MVAr)
- Generator R, X to ground for all the sequences in per unit.
- Transformer Data
 - "From" bus and "To" bus numbers
 - Transformer R, X (for positive and zero sequences) in per unit
 - Transformer R, X to ground in per unit. Note: This parameter will obviously depend on if your transformer's connection is grounded or not
 - The Transformer's Connection (i.e., Δ -Y, Ygrounded-Y, Δ - Δ , etc.)

Short Circuit Analysis

Performing fault analysis

- Go to Short Circuit → Solve and report network with unbalances (SCMU/SCOP)
 - The fault analysis dialog box opens
 - Check the "Set up network before solving with unbalances" box
 - Select the fault type to be performed
 - Select the bus (number) where the fault is to be applied and its characteristics when appropriate
 - Press Go to run the simulation

1ultiple Simultaneous Unbalances	×
2 phases closed 1 end opened In line slider Solution Dutput 3 phase fault First L-G Second L-G First L-G Second L-L-G 1 phase closed I Select 3 phase fault Select Select Select Select	All unbalances status
Set up network before solving with unbalances	Go
Apply transformer impedence to zero correction	Reset
DC lines and FACTS devices option Block and ignore	Close

- Wind
 - Generally modeled as Type 3 or Type 4 machine
 - PSSE control mode 2 or 3
 - Qmin = -Qmax
- Solar
 - PSSE control mode 2
 - High X source (9999)
 - Qmin = -Qmax
- Energy storage
 - PSSE control mode 2
 - High X source (9999)
 - Pmin = -Pmax; Qmin = -Qmax

Machine ID 1		In Service	Bus Type	Code	2		
Machine Data					Т	ransformer Data	
Pgen (MW)	Pmax (MW)		Pmin (MW)		F	R Tran (pu)	
12,0000	12.6000		4.0000] [0.00000	
Qgen (Mvar)	Qmax (Mvar)		Qmin (Mvar))	(Tran (pu)	
3.0857	3.9442		-3.9442] [00000.0	
Mbase (MVA)	R Source (pu)		X Source (pu)		0	Gentap (pu)	
12.60			999.000000			1.00000	
Owner Data				Wind Dat	a		
Owner		Fraction		Control N	lode		
1	Select 1.000			2 - +, - Q limits based on WPF		ased on WPF \sim	
	Sector L		_	Power Factor (WPF)			
0	Select 1.000			0.950			
0	Select	1.000		Plant Dat	a		
	and the second second	hanna		Sched V	otage	Remote Bus	
0	Select	1.000		1.0200		0	

- Creating the dynamic models
 - In your project directory, create a text file with extension "*.dyr"
 - Start PSS/E, open the project, open the empty "*.dyr" file
 - The dynamic data spreadsheet will open
 - Fill in all required dynamic data for all equipment
 - Save the project

Etudes d'Intégration des Energies Renewables dans les Reseaux Electriques de Transport

Jour 4: Analyse de l'impact des énergies renouvelables sur les réseaux électriques de transport

Kwami Senam Sedzro, PhD

Curriculum

- Jour 1: Réseaux Electriques de Transport et PSS/E
 - Réseaux électriques de transport: Fonctions et composantes
 - Réseaux électriques de transport du futur
 - Intégration des énergies renouvelables
 - Le logiciel PSS/E
- Jour 2: Modélisation et étude des réseaux de transport a l'aide du logiciel PSS/E
 - Modélisation d'un réseau électrique de transport dans l'environnement PSS/E
 - Etude des réseaux électriques de transport avec PSS/E
- Jour 3: Analyse de l'impact des énergies renouvelables sur les réseaux électriques de transport
 - Modélisation des énergies renouvelables dans l'environnement PSS/E

- Etude de l'impact des énergies renouvelables sur le réseau de transport – Ecoulement de puissances
- Jour 4: Analyse de l'impact des énergies renouvelables sur les réseaux électriques de transport
 - Etude de l'impact des énergies renouvelables sur le réseau de transport – Analyse des contingences
 - Etude de l'impact des énergies renouvelables sur le réseau de transport – Analyse des puissances de court-circuit
- Jour 5: Introduction aux études des stabilité dynamique des réseaux de transport
 - Introduction aux études des stabilité dynamique des réseaux de transport

Jour 4: Analyse de l'impact des énergies renouvelables sur les réseaux électriques de transport

- Etude de l'impact des énergies renouvelables sur le réseau de transport – Analyse des contingences
- Etude de l'impact des énergies renouvelables sur le réseau de transport – Analyse des puissances de court-circuit

The AC Contingency Calculation (ACCC) uses 3 files:

- subsystem file ("*.sub")
 - The subsystem file informs the simulator to only look at a given section, or zone of the network.
- monitor file ("*.mon")
 - The monitor file tells the simulator which branches to supervise during the contingency analysis
- contingency file ("*.con")
 - The contingency file is programmed to remove equipment from service to mimic potential outage conditions. When a single line is taken out of service, the case is referred to as an (N-1) contingency.

How to generate these files?

- Start PSS/E
- Open a saved case (.sav and .sld files)
- Click on Create/Modify Config Files
 - (can also be obtained from the Power Flow menu) \rightarrow
 - The Configuration File Builder dialog box opens
 - Uncheck the "Append subsystem description to the existing file" box
 - Give a subsystem name
 - Click select from the "Select bus subsystem"
 - The "Bus subsystem selector" dialog box opens
 - Select an area from the "Unselected areas" box, click on the ">" button to add it to the "Selected areas" box
 - Click "Apply" and "OK" to close the dialog box

Area Owner Zone Base kV Bus		
Unselected areas	Selected areas	
1 CENTRAL 2 EAST 3 CENTRAL_DC 4 EAST_COGEN1 5 WEST 6 EAST_COGEN2	> < >>	
Area number		

How to generate these files? (cnt'd)

- Click on the 3-dot button next to the "Subsystem description file" box
 - Name your subsystem file, then save it.
- Click on the 3-dot button next to the "Monitored element file" box
 - Name your monitored element file, then save it.
- Click on the 3-dot button next to the "Contingency description data file" box
 - Name your contingency description file, then save it.
- Click Go, then DFAX
 - Navigate to the directory where you would like to create your distribution factor output file. It is a text file with extension ".dfx". Name it, select it, and press OK on the "Build Distribution Factor Data File" dialog box
- Congratulations! The "*.con", "*.mon", and "*.sub" files have now been created

Configuration File Builder	\times
Files to create/modify	
Create/modify SUB Create/modify MON Create/modify CON	
Subsystem Description Data file	
Append Subsystem description to existing file	
Subsystem name	
Select bus subsystem Select	
Subsystem description file	
└────────────────────────────────────	
Monitored Element Data file	
Append Monitored elements to existing file	
Bus voltage range Vmin 0.95 Vmax 1.05	
Bus voltage deviation Drop 0.03 Rise 0.06	
All branch flows	
Monitored element file	
└────────────────────────────────────	
Contingency Description Data file	
Append Contingency descriptions to existing file	
Single contingency	
Bus-double contingency Parallel circuit contingency	
✓ Include tie-lines	
Contingency description data file	
└────────────────────────────────────	
DFAX Go Close	

Run the contingency analysis

 Click on the AC contingency calculation (ACCC) button on the 4th toolbar

```
(or go to Power Flow \rightarrow Contingency, Reliability, PV/QV analysis \rightarrow AC contingency solution (ACCC)...)
```

- The "AC Contingency Solution" dialog box opens.
- Click on the 3-dot button next to the "Distribution factor data file" box
 - Navigate to the ".dfx" file you created, select it, and click "save".
- Click on the 3-dot button next to the "Contingency solution output file" box
 - Navigate to the directory where you would like to write the contingency results.
 - Give a file name and click "save"
- Click on Solve

Solution options	4000000						
Tap adjustment	Area intercha	inge control	Switched shurt adjustments	122			
Lock taps	Disabled		O Lock all	Non-div	rergent solution		
OShipping	O Tie lines	only	Enable all	Adjust p	Adjust phase shift		
ODeect	O Tie lines and loads		OEnable continuous, disable discrete	Adjust DC taps			
Solution Engine			Dispatch mode	Dispatch sy	rstern		
Fixed slope decou	pled Newton Rapi	haon	Disable ~	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
OFul Newton-Raphs	ion		Mamatch tolerance 0.10 A 1.11				
ow terminal voltage bei	havior	Induction made	chine(s) stalled or tripped				
nduction machine stalls	ų	Treat conting	pency as non-converged				
CONTRACTOR OF A				v	DFAX.		
ta file							
stribution factor ata file ontingency olution output file				* _			
stribution factor ata file ontingency slution output file pad throwover ata file				~ _	Edt.		
Initiation factor staffie connegency plation output file sad throwover staffie nit inertia and preemor data file				~	Edt.		
Interest and several s					Edt. Edt.		

Reporting ACCC results

- Click on Reports...
 - The "AC Contingency Report" dialog box opens
- Make sure the correct ACCC results file is pointed to in the "Contingency solution output file" box.
- Click on Go to run the report
 - Check the list of files created, in the report tab.

C Contingency Rep	borts
Report format	Spreadsheet overload report
Base case rating	Rate A 👻
Contingency case ra	ating Rate A 🔹
Exclude interface	es from reports
📝 Perform voltage I	imit check
Exclude element	s with base case loading violations from contingency reports
Exclude element	s with base case voltage range violations from contingency reports
Exclude cases w	vith no overloads from non-spreadsheet overload report
Report post-tripp	ing simulation solutions
0	Number of low voltage range violations
0	Number of high voltage range violations
0	Number of voltage deviation violations
0	Number of buses in largest disconnected island
6000	Maximum elements in available capacity table
100.00	Percent of flow rating
0.000	Minimum contingency case flow change for overload reports
0.00	Minimum contingency case voltage change for range violations
0.00	Minimum contingency case % loading increase for overload reports
99999.00	Cutoff threshold for available capacity table
0.50	Bus mismatch tolerance (MVA)
5.00	System mismatch tolerance (MVA)
Contingency solution output file	ⁿ U:\PSSE Labs\LAB4\area1a.acc
	Report format Base case rating Contingency case rating Exclude interface Perform voltage Exclude element Exclude element Exclude cases w Report post-tripp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- Generic dynamic model
 - Plant control model
 - Generator/Converter
 - Electrical control mod
- Wind
- Solar
- Energy storage

Type 3 - Doubly-Fed

ac/dc

Type 3 WTG

Type 4A WTG

Vref/Vreg or Qref/Qgen Freq_ref/Freq and At plant level Plant pref/Pgen

Model Name in the Model Specification Document	Model Name in GE PSLF TM	Model Name in Siemens PTI PSS®E	
	New Mod	els (developed 2011 - 2014)	
REGC_A	regc_a	REGCAU1 (V33); REGCA1 (V34)	
REEC_A	reec_a	REECAU1 (V33); REECA1 (V34)	
REEC_B	reec_b	REECBU1 (V33); REECB1 (V34)	
REEC_C	reec_c	REECCU1 (V33 & V34)	
REPC_A	repc_a	REPCTAU1 & REPCAU1 (V33); REPCTA1 & REPCA1 (V34)	
WTGT_A	wtgt_a	WTDTAU1 (V33); WTDTA1 (V34)	
WTGAR_A	wtga_a	WTARAU1 (V33); WTARA1 (V34)	
WTGPT_A	wtgp_a	WTPTAU1 (V33); WTPTA1 (V34)	
WTGTRQ_A	wtgq_a	WTTQAU1 (V33); WTTQA1 (V34)	
WT1P_B	wt1p_b	not yet part of the standard model library	
	Existing Mod	dels (developed prior to 2009)	
WT1G	wt1g	WT1G1	
WT2G	wt2g	WT2G1	
WT2E	wt2e	WT2E1	
LHVRT	lhvrt	VTGTPAT	
LHFRT	lhfrt	FRQTPAT	

- Wind
 - Generally modeled as Type 3 or Type 4 machine
 - PSSE control mode 2 or 3
 - Qmin = -Qmax
- Solar
 - PSSE control mode 2
 - High X source (9999)
 - Qmin = -Qmax
- Energy storage
 - PSSE control mode 2
 - High X source (9999)
 - Pmin = -Pmax; Qmin = -Qmax

Machina ID 1		la Cantina	But Time (ada	0		
		n service	bus type c	ove	6		
Machine Data					Tr	ansformer Data	
Pgen (MW)	Pmax (MW)		Pmin (MW)		R	R Tran (pu)	
12,0000	12.6000		4.0000		0	0.00000	
Ogen (Mvar)	Qmax (Mvar)		Qmin (Mvar)		X Tran (pu)		
3.0857	3.9442		-3.9442		0.00000		
Mbase (MVA)	R Source (pu)		X Source (pu)		G	Gentap (pu) 1.00000	
12.60					1		
Owner Data			W	nd Data			
Owner		Fraction	C	ontrol Mo	de		
1	Select 1.000		2	2 - +, - Q limits based on WPF			
· · · · · ·			Po	Power Factor (WPF)			
0	Select 1.000		0	950	0		
0	Select	1.000	Pla	ant Data			
		hanna	Se	ched Volt	age	Remote Bus	
0	Select	1.000	1	0200		0	

- Creating the dynamic models
 - In your project directory, create a text file with extension "*.dyr"
 - Start PSS/E, open the project, open the empty "*.dyr" file
 - The dynamic data spreadsheet will open
 - Fill in all required dynamic data for all equipment
 - Save the project

Etudes d'Intégration des Energies Renewables dans les Reseaux Electriques de Transport

Jour 5: Modélisation et étude des réseaux de transport a l'aide du logiciel PSS/E

Kwami Senam Sedzro, PhD

Curriculum

- Jour 1: Réseaux Electriques de Transport et PSS/E
 - Réseaux électriques de transport: Fonctions et composantes
 - Réseaux électriques de transport du futur
 - Intégration des énergies renouvelables
 - Le logiciel PSS/E
- Jour 2: Modélisation et étude des réseaux de transport a l'aide du logiciel PSS/E
 - Modélisation d'un réseau électrique de transport dans l'environnement PSS/E
 - Etude des réseaux électriques de transport avec PSS/E
- Jour 3: Analyse de l'impact des énergies renouvelables sur les réseaux électriques de transport
 - Modélisation des énergies renouvelables dans l'environnement PSS/E

- Etude de l'impact des énergies renouvelables sur le réseau de transport – Ecoulement de puissances
- Jour 4: Analyse de l'impact des énergies renouvelables sur les réseaux électriques de transport
 - Etude de l'impact des énergies renouvelables sur le réseau de transport – Analyse des contingences
 - Etude de l'impact des énergies renouvelables sur le réseau de transport – Analyse des puissances de court-circuit

Jour 5: Introduction aux études des stabilité dynamique des réseaux de transport

 Introduction aux études des stabilité dynamique des réseaux de transport

Jour 5: Introduction aux études des stabilité dynamique des réseaux de transport

 Introduction aux études des stabilité dynamique des réseaux de transport

Preparing for a dynamic stability simulation
Preparing for a dynamic stability simulation

- 1. Open a saved case
- 2. With the file open, click on the **Machines** tab
 - Under the column labeled **X Source** (pu) input the Xd' value for each generator
 - Input the negative and zero sequence values
- 3. Convert the generators to Norton equivalents (constant current injections) and assign load characteristics to the loads.
 - Go to Powerflow>Convert Loads and Generators
- 4. Reorder the buses for sparsity (required because we converted the swing bus to a type PV bus)
 - Perform ORDR: Go to Powerflow>Solution>Order Network for Matrix Operations
- 5. Factorize the admittance matrix
 - Perform FACT: Go to Powerflow>Solution>Factorize Admittance Matrix
- 6. Solve the converted case
 - Perform TYSL: Go to Powerflow>Solution>Solution for Switching Studies
- 7. Save the converted case
 - Perform Save/Show on your converted case. Give this converted case a different name than the saved case used

Running a base case stability simulation

Running a base case stability simulation

- 1. Open the case via **File>Open>(your case.sav)**.
- 2. Read in the dynamic data sheet: File>Open>(your dyr file)
- 3. Specify which data to record
 - Under **Dynamics**, Click **Channel setup wizard** menu button
 - Select quantities to output
 - Select buses
- 4. Run base case
 - Under **Dynamics**, choose **Simulation** tab, Click the **Perform Simulation** (STRT/RUN).
 - The Perform Dynamic Simulation dialog box opens.
 - Fill out the "Channel output file" text box a filename with a ".out" extension.
 - Specify the following **Simulation options**
 - Run to: 1 (run the simulation from 0 to 1 second)
 - Print Every: 0 (write nothing to screen)
 - Write Every: 1 (write every time step to the plotting file)
 - Plot Every: 0 (do not update the plot book)
 - Click Initialize at the bottom, then Press Run. This is now your base case simulation.
 - Press Close to exit.

Channel out	put file	C:\Users\	wanning01\Basecase.out 🔹 📖
Simulation op	nions		
Run to	1	4	0.0083 tect
Print every	0	10	time steps
White every	1	÷	time steps
Plot every	0	4	time steps
Display net	unde cou		n ferre

Key steps:

- a) Initialize
- b) Apply a fault
- c) Run the simulation from time = 0 until t = breakers open
- d) Clear the fault and remove a line
- e) Run the simulation from t = breakers open until t = 10 seconds

- 1. Initialize (previous stage base case stability)
- 2. Apply the fault
 - In the top menu bar, click "Disturbance" and choose "Bus fault"
 - In the "Apply a But Fault" window, Click Select option and choose the bus where to apply the fault then press OK.
 - Specify the admittance parameters of the fault and press OK
 - Example: For a short-circuit, enter "9999" in admittance X. This puts a fault with a very large susceptance at the bus remember to select the appropriate unit

oply fault at bus (N	(umber)		Base KV
103		Select	161.00
Units	Adm	itance	
I MVA	R		×
O MH0's	0		9999999999
C OHM's			

- 3. Run the simulation up to the clearing time
 - Under Dynamics, choose Simulation tab, Click the Perform Simulation (STRT/RUN)
 - In the "Channel output file" dialog box, enter the same ".out" as in the initialization step
 - Enter values for Simulation options: Run to, Print Every, Write Every, Plot Every.
 - Example:
 - Run to: 0.1 (clearing time = 0.1 sec)
 - Print Every: 0
 - Write Every: 1
 - Plot Every: 0
 - Press Run

4. Clear the fault

- Go to Disturbance \rightarrow Clear fault
- In the "Clear Fault" dialog box, choose existing fault and press Go
- Trip any relevant branch
 - Go to Disturbance \rightarrow Trip a line

5. Run the simulation

- Go to Dynamics \rightarrow Simulation \rightarrow Perform Simulation (STRT/RUN)
- In the "Channel output file" dialog box,
 - enter the same output filename as at the initialization stage
 - Enter values for Simulation options: Print Every, Write Every, Plot Every.
 - Example:
 - Run to: 10
 - Print Every: 0
 - Write Every: 1
 - Plot Every: 0
 - Click "Run", then click "Close"

6. Plot results

- Create a PlotBook
 - Go to File \rightarrow New \rightarrow Plot Book
- Access recorded results
 - Go to View \rightarrow Plot Tree
 - In the Plot Tree explorer window on the left, navigate to the saved ".out" (channel output) file
 - Drag and drop any desired channel to the Channel Plot book on the right to view it

System Impact Analysis Framework

